New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes
The paper develops new results on stability analysis and stabilization of linear repetitive processes. Repetitive processes are a distinct subclass of two-dimensional (2D) systems, whose origins are in the modeling for control of mining and metal rolling operations. The reported systems theory for t...
Gespeichert in:
Veröffentlicht in: | Multidimensional systems and signal processing 2022-03, Vol.33 (1), p.223-245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 1 |
container_start_page | 223 |
container_title | Multidimensional systems and signal processing |
container_volume | 33 |
creator | Boski, Marcin Maniarski, Robert Paszke, Wojciech Rogers, Eric |
description | The paper develops new results on stability analysis and stabilization of linear repetitive processes. Repetitive processes are a distinct subclass of two-dimensional (2D) systems, whose origins are in the modeling for control of mining and metal rolling operations. The reported systems theory for them has been applied in other areas such iterative learning control, where, uniquely among 2D systems based designs, experimental validation results have been reported. This paper uses a version of the Kalman–Yakubovich–Popov Lemma to develop new less conservative conditions for stability in terms of linear matrix inequalities, with an extension to control law design. Differential and discrete dynamics are analysed in an unified manner, and supporting numerical examples are given. |
doi_str_mv | 10.1007/s11045-021-00791-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631667315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631667315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4aad53cf591d26687f7f3f81dbae61ffeb4ecdcd06e106222d5161b5b1389e483</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Bz9W8pE3boyz-g0Uveg5p86JZarubZNX66Y1b0Zun9wbmNwNDyCmwc2CsvAgALC8yxiFLsoZs3CMzKEqRsYrn-2TGai4ymcQhOQphxVjCQM7I5h7fqcdOf6ChIerGdS6OVPe_6lNHN_S0HXrjvr9A7eBpM8QXalxoPUbc2Y2zFj320emOdq5H7VPwGmOi3pCu_dBiCBiOyYHVXcCTnzsnT9dXj4vbbPlwc7e4XGatkCJmudamEK0tajBcyqq0pRW2AtNolJCqmhxb0xomEZjknJsCJDRFA6KqMa_EnJxNual5s8UQ1WrY-j5VKi4FSFkKKJKLT67WDyF4tGrt3av2owKmvqdV07QqTat206oxQWKCQjL3z-j_ov-hvgCAx3-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631667315</pqid></control><display><type>article</type><title>New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes</title><source>Springer Online Journals Complete</source><creator>Boski, Marcin ; Maniarski, Robert ; Paszke, Wojciech ; Rogers, Eric</creator><creatorcontrib>Boski, Marcin ; Maniarski, Robert ; Paszke, Wojciech ; Rogers, Eric</creatorcontrib><description>The paper develops new results on stability analysis and stabilization of linear repetitive processes. Repetitive processes are a distinct subclass of two-dimensional (2D) systems, whose origins are in the modeling for control of mining and metal rolling operations. The reported systems theory for them has been applied in other areas such iterative learning control, where, uniquely among 2D systems based designs, experimental validation results have been reported. This paper uses a version of the Kalman–Yakubovich–Popov Lemma to develop new less conservative conditions for stability in terms of linear matrix inequalities, with an extension to control law design. Differential and discrete dynamics are analysed in an unified manner, and supporting numerical examples are given.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/s11045-021-00791-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Circuits and Systems ; Control stability ; Control theory ; Electrical Engineering ; Engineering ; Iterative methods ; Linear matrix inequalities ; Mathematical analysis ; Signal,Image and Speech Processing ; Stability analysis ; System theory ; Systems theory ; Two dimensional models</subject><ispartof>Multidimensional systems and signal processing, 2022-03, Vol.33 (1), p.223-245</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4aad53cf591d26687f7f3f81dbae61ffeb4ecdcd06e106222d5161b5b1389e483</citedby><cites>FETCH-LOGICAL-c363t-4aad53cf591d26687f7f3f81dbae61ffeb4ecdcd06e106222d5161b5b1389e483</cites><orcidid>0000-0003-2023-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11045-021-00791-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11045-021-00791-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Boski, Marcin</creatorcontrib><creatorcontrib>Maniarski, Robert</creatorcontrib><creatorcontrib>Paszke, Wojciech</creatorcontrib><creatorcontrib>Rogers, Eric</creatorcontrib><title>New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes</title><title>Multidimensional systems and signal processing</title><addtitle>Multidim Syst Sign Process</addtitle><description>The paper develops new results on stability analysis and stabilization of linear repetitive processes. Repetitive processes are a distinct subclass of two-dimensional (2D) systems, whose origins are in the modeling for control of mining and metal rolling operations. The reported systems theory for them has been applied in other areas such iterative learning control, where, uniquely among 2D systems based designs, experimental validation results have been reported. This paper uses a version of the Kalman–Yakubovich–Popov Lemma to develop new less conservative conditions for stability in terms of linear matrix inequalities, with an extension to control law design. Differential and discrete dynamics are analysed in an unified manner, and supporting numerical examples are given.</description><subject>Artificial Intelligence</subject><subject>Circuits and Systems</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Iterative methods</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Signal,Image and Speech Processing</subject><subject>Stability analysis</subject><subject>System theory</subject><subject>Systems theory</subject><subject>Two dimensional models</subject><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAUxIMouK5-AU8Bz9W8pE3boyz-g0Uveg5p86JZarubZNX66Y1b0Zun9wbmNwNDyCmwc2CsvAgALC8yxiFLsoZs3CMzKEqRsYrn-2TGai4ymcQhOQphxVjCQM7I5h7fqcdOf6ChIerGdS6OVPe_6lNHN_S0HXrjvr9A7eBpM8QXalxoPUbc2Y2zFj320emOdq5H7VPwGmOi3pCu_dBiCBiOyYHVXcCTnzsnT9dXj4vbbPlwc7e4XGatkCJmudamEK0tajBcyqq0pRW2AtNolJCqmhxb0xomEZjknJsCJDRFA6KqMa_EnJxNual5s8UQ1WrY-j5VKi4FSFkKKJKLT67WDyF4tGrt3av2owKmvqdV07QqTat206oxQWKCQjL3z-j_ov-hvgCAx3-o</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Boski, Marcin</creator><creator>Maniarski, Robert</creator><creator>Paszke, Wojciech</creator><creator>Rogers, Eric</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2023-7569</orcidid></search><sort><creationdate>20220301</creationdate><title>New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes</title><author>Boski, Marcin ; Maniarski, Robert ; Paszke, Wojciech ; Rogers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4aad53cf591d26687f7f3f81dbae61ffeb4ecdcd06e106222d5161b5b1389e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Circuits and Systems</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Iterative methods</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Signal,Image and Speech Processing</topic><topic>Stability analysis</topic><topic>System theory</topic><topic>Systems theory</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boski, Marcin</creatorcontrib><creatorcontrib>Maniarski, Robert</creatorcontrib><creatorcontrib>Paszke, Wojciech</creatorcontrib><creatorcontrib>Rogers, Eric</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boski, Marcin</au><au>Maniarski, Robert</au><au>Paszke, Wojciech</au><au>Rogers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes</atitle><jtitle>Multidimensional systems and signal processing</jtitle><stitle>Multidim Syst Sign Process</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>33</volume><issue>1</issue><spage>223</spage><epage>245</epage><pages>223-245</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>The paper develops new results on stability analysis and stabilization of linear repetitive processes. Repetitive processes are a distinct subclass of two-dimensional (2D) systems, whose origins are in the modeling for control of mining and metal rolling operations. The reported systems theory for them has been applied in other areas such iterative learning control, where, uniquely among 2D systems based designs, experimental validation results have been reported. This paper uses a version of the Kalman–Yakubovich–Popov Lemma to develop new less conservative conditions for stability in terms of linear matrix inequalities, with an extension to control law design. Differential and discrete dynamics are analysed in an unified manner, and supporting numerical examples are given.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11045-021-00791-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2023-7569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-6082 |
ispartof | Multidimensional systems and signal processing, 2022-03, Vol.33 (1), p.223-245 |
issn | 0923-6082 1573-0824 |
language | eng |
recordid | cdi_proquest_journals_2631667315 |
source | Springer Online Journals Complete |
subjects | Artificial Intelligence Circuits and Systems Control stability Control theory Electrical Engineering Engineering Iterative methods Linear matrix inequalities Mathematical analysis Signal,Image and Speech Processing Stability analysis System theory Systems theory Two dimensional models |
title | New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20relaxed%20stability%20and%20stabilization%20conditions%20for%20both%20discrete%20and%20differential%20linear%20repetitive%20processes&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Boski,%20Marcin&rft.date=2022-03-01&rft.volume=33&rft.issue=1&rft.spage=223&rft.epage=245&rft.pages=223-245&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/s11045-021-00791-y&rft_dat=%3Cproquest_cross%3E2631667315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631667315&rft_id=info:pmid/&rfr_iscdi=true |