Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors

Nickel–potassium hexacyanoferrate (KNiHCF) and its analogues (NaKNiHCF) with different Na : K ratio are synthesized by chemical coprecipitation. The salt structure is characterized by the methods of X-ray diffraction, energy-dispersive microanalysis, and transmission electron microscopy. The electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of electrochemistry 2022, Vol.58 (1), p.74-82
Hauptverfasser: Chernyavina, V. V., Berezhnaya, A. G., Panchenko, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 74
container_title Russian journal of electrochemistry
container_volume 58
creator Chernyavina, V. V.
Berezhnaya, A. G.
Panchenko, A. V.
description Nickel–potassium hexacyanoferrate (KNiHCF) and its analogues (NaKNiHCF) with different Na : K ratio are synthesized by chemical coprecipitation. The salt structure is characterized by the methods of X-ray diffraction, energy-dispersive microanalysis, and transmission electron microscopy. The electrochemical characteristics of composite electrodes containing 20 wt % salt are studied by the methods of cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. The composite electrodes are shown to exhibit the higher specific capacitance ( С sp ) as compared with the carbon electrode. The incorporation of sodium into the KNiHCF structure increases С sp at the high charge–discharge rates. It is shown that electrodes containing the analogue of NaKNiHCF with the Na/K ratio 0.92 : 0.24 demonstrate the high electronic and ionic conductivity and the low equivalent series resistance and charge-transfer resistance. The latter material can be used as the cathode material in hybrid electrochemical capacitors. The ease of synthesis of these salts and the simple method of electrode fabrication makes possible their large-scale application in rechargeable batteries.
doi_str_mv 10.1134/S102319352112003X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631666751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631666751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3c7af2591cfe4303b1ddc65dbf1d791b5bc0a150abcf30537b21e089794f1d933</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsFY_gLeA59VMsn-6R1mrFWo9qOBtyWYnNnW7WZO0WPDDm1rFg3iaYd7vvYEXRadAzwF4cvEAlHEoeMoAGKX8eS8aQEZHMecJ2w97kOOtfhgdObeglI5yKAbRx0x0phfWa9miI0aRmZav2JIJvgu5CaJCa4VHcoVWr4XX64AJR_wcSWmWvemw81_GcYvSW9MguQu81aJ1RBn7c5dzXGopWlKKXkjtjXXH0YEKFJ58z2H0dD1-LCfx9P7mtrycxpJlIx9zmQvF0gKkwoRTXkPTyCxtagVNXkCd1pIKSKmopeI05XnNAOmoyIskEAXnw-hsl9tb87ZC56uFWdkuvKxYxiHLsjyFQMGOktY4Z1FVvdVLYTcV0GpbcvWn5OBhO48LbPeC9jf5f9MnNDqAgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631666751</pqid></control><display><type>article</type><title>Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors</title><source>SpringerNature Journals</source><creator>Chernyavina, V. V. ; Berezhnaya, A. G. ; Panchenko, A. V.</creator><creatorcontrib>Chernyavina, V. V. ; Berezhnaya, A. G. ; Panchenko, A. V.</creatorcontrib><description>Nickel–potassium hexacyanoferrate (KNiHCF) and its analogues (NaKNiHCF) with different Na : K ratio are synthesized by chemical coprecipitation. The salt structure is characterized by the methods of X-ray diffraction, energy-dispersive microanalysis, and transmission electron microscopy. The electrochemical characteristics of composite electrodes containing 20 wt % salt are studied by the methods of cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. The composite electrodes are shown to exhibit the higher specific capacitance ( С sp ) as compared with the carbon electrode. The incorporation of sodium into the KNiHCF structure increases С sp at the high charge–discharge rates. It is shown that electrodes containing the analogue of NaKNiHCF with the Na/K ratio 0.92 : 0.24 demonstrate the high electronic and ionic conductivity and the low equivalent series resistance and charge-transfer resistance. The latter material can be used as the cathode material in hybrid electrochemical capacitors. The ease of synthesis of these salts and the simple method of electrode fabrication makes possible their large-scale application in rechargeable batteries.</description><identifier>ISSN: 1023-1935</identifier><identifier>EISSN: 1608-3342</identifier><identifier>DOI: 10.1134/S102319352112003X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Capacitors ; Charge transfer ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Discharge ; Electrochemistry ; Electrode materials ; Electrodes ; Ion currents ; Nanoparticles ; Nickel ; Physical Chemistry ; Rechargeable batteries ; Sodium</subject><ispartof>Russian journal of electrochemistry, 2022, Vol.58 (1), p.74-82</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1023-1935, Russian Journal of Electrochemistry, 2022, Vol. 58, No. 1, pp. 74–82. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Elektrokhimiya, 2022, Vol. 58, No. 1, pp. 28–37.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3c7af2591cfe4303b1ddc65dbf1d791b5bc0a150abcf30537b21e089794f1d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S102319352112003X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S102319352112003X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Chernyavina, V. V.</creatorcontrib><creatorcontrib>Berezhnaya, A. G.</creatorcontrib><creatorcontrib>Panchenko, A. V.</creatorcontrib><title>Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors</title><title>Russian journal of electrochemistry</title><addtitle>Russ J Electrochem</addtitle><description>Nickel–potassium hexacyanoferrate (KNiHCF) and its analogues (NaKNiHCF) with different Na : K ratio are synthesized by chemical coprecipitation. The salt structure is characterized by the methods of X-ray diffraction, energy-dispersive microanalysis, and transmission electron microscopy. The electrochemical characteristics of composite electrodes containing 20 wt % salt are studied by the methods of cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. The composite electrodes are shown to exhibit the higher specific capacitance ( С sp ) as compared with the carbon electrode. The incorporation of sodium into the KNiHCF structure increases С sp at the high charge–discharge rates. It is shown that electrodes containing the analogue of NaKNiHCF with the Na/K ratio 0.92 : 0.24 demonstrate the high electronic and ionic conductivity and the low equivalent series resistance and charge-transfer resistance. The latter material can be used as the cathode material in hybrid electrochemical capacitors. The ease of synthesis of these salts and the simple method of electrode fabrication makes possible their large-scale application in rechargeable batteries.</description><subject>Capacitors</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Ion currents</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Physical Chemistry</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><issn>1023-1935</issn><issn>1608-3342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxRdRsFY_gLeA59VMsn-6R1mrFWo9qOBtyWYnNnW7WZO0WPDDm1rFg3iaYd7vvYEXRadAzwF4cvEAlHEoeMoAGKX8eS8aQEZHMecJ2w97kOOtfhgdObeglI5yKAbRx0x0phfWa9miI0aRmZav2JIJvgu5CaJCa4VHcoVWr4XX64AJR_wcSWmWvemw81_GcYvSW9MguQu81aJ1RBn7c5dzXGopWlKKXkjtjXXH0YEKFJ58z2H0dD1-LCfx9P7mtrycxpJlIx9zmQvF0gKkwoRTXkPTyCxtagVNXkCd1pIKSKmopeI05XnNAOmoyIskEAXnw-hsl9tb87ZC56uFWdkuvKxYxiHLsjyFQMGOktY4Z1FVvdVLYTcV0GpbcvWn5OBhO48LbPeC9jf5f9MnNDqAgA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chernyavina, V. V.</creator><creator>Berezhnaya, A. G.</creator><creator>Panchenko, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors</title><author>Chernyavina, V. V. ; Berezhnaya, A. G. ; Panchenko, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3c7af2591cfe4303b1ddc65dbf1d791b5bc0a150abcf30537b21e089794f1d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Ion currents</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Physical Chemistry</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernyavina, V. V.</creatorcontrib><creatorcontrib>Berezhnaya, A. G.</creatorcontrib><creatorcontrib>Panchenko, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernyavina, V. V.</au><au>Berezhnaya, A. G.</au><au>Panchenko, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors</atitle><jtitle>Russian journal of electrochemistry</jtitle><stitle>Russ J Electrochem</stitle><date>2022</date><risdate>2022</risdate><volume>58</volume><issue>1</issue><spage>74</spage><epage>82</epage><pages>74-82</pages><issn>1023-1935</issn><eissn>1608-3342</eissn><abstract>Nickel–potassium hexacyanoferrate (KNiHCF) and its analogues (NaKNiHCF) with different Na : K ratio are synthesized by chemical coprecipitation. The salt structure is characterized by the methods of X-ray diffraction, energy-dispersive microanalysis, and transmission electron microscopy. The electrochemical characteristics of composite electrodes containing 20 wt % salt are studied by the methods of cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. The composite electrodes are shown to exhibit the higher specific capacitance ( С sp ) as compared with the carbon electrode. The incorporation of sodium into the KNiHCF structure increases С sp at the high charge–discharge rates. It is shown that electrodes containing the analogue of NaKNiHCF with the Na/K ratio 0.92 : 0.24 demonstrate the high electronic and ionic conductivity and the low equivalent series resistance and charge-transfer resistance. The latter material can be used as the cathode material in hybrid electrochemical capacitors. The ease of synthesis of these salts and the simple method of electrode fabrication makes possible their large-scale application in rechargeable batteries.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S102319352112003X</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-1935
ispartof Russian journal of electrochemistry, 2022, Vol.58 (1), p.74-82
issn 1023-1935
1608-3342
language eng
recordid cdi_proquest_journals_2631666751
source SpringerNature Journals
subjects Capacitors
Charge transfer
Chemical synthesis
Chemistry
Chemistry and Materials Science
Discharge
Electrochemistry
Electrode materials
Electrodes
Ion currents
Nanoparticles
Nickel
Physical Chemistry
Rechargeable batteries
Sodium
title Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticles%20of%20Nickel%20Hexacyanoferrate%20Derivatives%20as%20the%20Components%20of%20Electrode%20Materials%20for%20Electrochemical%20Capacitors&rft.jtitle=Russian%20journal%20of%20electrochemistry&rft.au=Chernyavina,%20V.%20V.&rft.date=2022&rft.volume=58&rft.issue=1&rft.spage=74&rft.epage=82&rft.pages=74-82&rft.issn=1023-1935&rft.eissn=1608-3342&rft_id=info:doi/10.1134/S102319352112003X&rft_dat=%3Cproquest_cross%3E2631666751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631666751&rft_id=info:pmid/&rfr_iscdi=true