Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials

In this study, the fabrication of perlite-supported Fe 3 O 4 (Fe 3 O 4 /perlite), SiO 2 -coated Fe 3 O 4 /perlite (Fe 3 O 4 /perlite@SiO 2 ), and sulfanilamide-modified Fe 3 O 4 /perlite@SiO 2 (Fe 3 O 4 /perlite@SiO 2 @sulfanilamide) magnetic nanomaterials and their characterization by various spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2022-03, Vol.128 (3), Article 222
Hauptverfasser: Kutluay, Sinan, Şahin, Ömer, Ece, Mehmet Şakir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 128
creator Kutluay, Sinan
Şahin, Ömer
Ece, Mehmet Şakir
description In this study, the fabrication of perlite-supported Fe 3 O 4 (Fe 3 O 4 /perlite), SiO 2 -coated Fe 3 O 4 /perlite (Fe 3 O 4 /perlite@SiO 2 ), and sulfanilamide-modified Fe 3 O 4 /perlite@SiO 2 (Fe 3 O 4 /perlite@SiO 2 @sulfanilamide) magnetic nanomaterials and their characterization by various spectroscopic techniques were presented. For this purpose, first, Fe 3 O 4 /perlite was fabricated via the co-precipitation method. Then, Fe 3 O 4 /perlite@SiO 2 and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide nanomaterials were fabricated using the sol–gel method. The structural properties of the fabricated nanomaterials were characterized using Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis-differential thermal analysis, and X-ray diffraction (XRD) analyses. The SEM, SEM–EDX, FTIR, and XRD analyses revealed that the fabrication and surface coatings of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were successfully performed. It was concluded that the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. According to the BET analysis, it was found that the specific surface areas of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 8.09, 12.71, and 5.89 m 2 /g, respectively. The average pore radius of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 9.68, 7.91, and 34.69 nm, respectively, using the Barrett-Joyner-Halenda method. Moreover, the half-pore widths of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 2.27, 1.58, and 17.99 nm, respectively, using the density functional theory method. Furthermore, in light of characterization findings, the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were in crystalline cubic spinel form, and they had mechanical and thermal stability and a mesoporous structure. Within the framework of the results, these developed nanomaterials, which have potential in many applications, such as sustainable technologies and environmental safety technologies, were brought to the attention of related fields. Graphical abstract
doi_str_mv 10.1007/s00339-022-05369-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631666588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631666588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b0fcf712aedaba3c4871bf9bc2e0b405126d301be378f2bdccabc5eaf0f6fad3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6AqwG3HZvXZGZ2lWJVELqw-3CTSWrKNFOT6UKXfrlpRxARvJvDPZwHHISuCb4lGJfTiDFjdY4pzXHBRJ3zEzQinKVXMHyKRrjmZV6xWpyjixg3OB2ndIQ-F6CC09C7zmfgm0y_QgDdm-A-BrKz2cKwJZ_uTGhdbya_39mLW9LJ0fqXn8V9a8G7FrauMdkW1t70TmcefLeFQwm08RKd2QTm6hvHaLW4X80f8-flw9P87jnXjNR9rrDVtiQUTAMKmOZVSZStlaYGK44LQkXDMFGGlZWlqtEalC4MWGyFhYaN0c0Quwvd297EXm66ffCpUVLBiBCiqKqkooNKhy7GYKzcBbeF8C4Jloep5TC1TFPL49SSJxMbTDGJ_dqEn-h_XF_Dt4Ny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631666588</pqid></control><display><type>article</type><title>Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kutluay, Sinan ; Şahin, Ömer ; Ece, Mehmet Şakir</creator><creatorcontrib>Kutluay, Sinan ; Şahin, Ömer ; Ece, Mehmet Şakir</creatorcontrib><description>In this study, the fabrication of perlite-supported Fe 3 O 4 (Fe 3 O 4 /perlite), SiO 2 -coated Fe 3 O 4 /perlite (Fe 3 O 4 /perlite@SiO 2 ), and sulfanilamide-modified Fe 3 O 4 /perlite@SiO 2 (Fe 3 O 4 /perlite@SiO 2 @sulfanilamide) magnetic nanomaterials and their characterization by various spectroscopic techniques were presented. For this purpose, first, Fe 3 O 4 /perlite was fabricated via the co-precipitation method. Then, Fe 3 O 4 /perlite@SiO 2 and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide nanomaterials were fabricated using the sol–gel method. The structural properties of the fabricated nanomaterials were characterized using Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis-differential thermal analysis, and X-ray diffraction (XRD) analyses. The SEM, SEM–EDX, FTIR, and XRD analyses revealed that the fabrication and surface coatings of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were successfully performed. It was concluded that the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. According to the BET analysis, it was found that the specific surface areas of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 8.09, 12.71, and 5.89 m 2 /g, respectively. The average pore radius of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 9.68, 7.91, and 34.69 nm, respectively, using the Barrett-Joyner-Halenda method. Moreover, the half-pore widths of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 2.27, 1.58, and 17.99 nm, respectively, using the density functional theory method. Furthermore, in light of characterization findings, the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were in crystalline cubic spinel form, and they had mechanical and thermal stability and a mesoporous structure. Within the framework of the results, these developed nanomaterials, which have potential in many applications, such as sustainable technologies and environmental safety technologies, were brought to the attention of related fields. Graphical abstract</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-022-05369-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density functional theory ; Differential thermal analysis ; Differential thermogravimetric analysis ; Energy dispersive X ray spectroscopy ; Fourier transforms ; Hysteresis loops ; Infrared spectroscopy ; Iron oxides ; Machines ; Manufacturing ; Materials science ; Nanomaterials ; Nanotechnology ; Optical and Electronic Materials ; Perlite ; Physics ; Physics and Astronomy ; Processes ; Scanning electron microscopy ; Silicon dioxide ; Sol-gel processes ; Spectroscopic analysis ; Structural stability ; Surfaces and Interfaces ; Thermal stability ; Thermogravimetric analysis ; Thin Films ; X-ray diffraction</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2022-03, Vol.128 (3), Article 222</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b0fcf712aedaba3c4871bf9bc2e0b405126d301be378f2bdccabc5eaf0f6fad3</citedby><cites>FETCH-LOGICAL-c319t-b0fcf712aedaba3c4871bf9bc2e0b405126d301be378f2bdccabc5eaf0f6fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-022-05369-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-022-05369-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kutluay, Sinan</creatorcontrib><creatorcontrib>Şahin, Ömer</creatorcontrib><creatorcontrib>Ece, Mehmet Şakir</creatorcontrib><title>Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this study, the fabrication of perlite-supported Fe 3 O 4 (Fe 3 O 4 /perlite), SiO 2 -coated Fe 3 O 4 /perlite (Fe 3 O 4 /perlite@SiO 2 ), and sulfanilamide-modified Fe 3 O 4 /perlite@SiO 2 (Fe 3 O 4 /perlite@SiO 2 @sulfanilamide) magnetic nanomaterials and their characterization by various spectroscopic techniques were presented. For this purpose, first, Fe 3 O 4 /perlite was fabricated via the co-precipitation method. Then, Fe 3 O 4 /perlite@SiO 2 and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide nanomaterials were fabricated using the sol–gel method. The structural properties of the fabricated nanomaterials were characterized using Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis-differential thermal analysis, and X-ray diffraction (XRD) analyses. The SEM, SEM–EDX, FTIR, and XRD analyses revealed that the fabrication and surface coatings of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were successfully performed. It was concluded that the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. According to the BET analysis, it was found that the specific surface areas of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 8.09, 12.71, and 5.89 m 2 /g, respectively. The average pore radius of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 9.68, 7.91, and 34.69 nm, respectively, using the Barrett-Joyner-Halenda method. Moreover, the half-pore widths of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 2.27, 1.58, and 17.99 nm, respectively, using the density functional theory method. Furthermore, in light of characterization findings, the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were in crystalline cubic spinel form, and they had mechanical and thermal stability and a mesoporous structure. Within the framework of the results, these developed nanomaterials, which have potential in many applications, such as sustainable technologies and environmental safety technologies, were brought to the attention of related fields. Graphical abstract</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Differential thermal analysis</subject><subject>Differential thermogravimetric analysis</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Fourier transforms</subject><subject>Hysteresis loops</subject><subject>Infrared spectroscopy</subject><subject>Iron oxides</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perlite</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Spectroscopic analysis</subject><subject>Structural stability</subject><subject>Surfaces and Interfaces</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Thin Films</subject><subject>X-ray diffraction</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrf6AqwG3HZvXZGZ2lWJVELqw-3CTSWrKNFOT6UKXfrlpRxARvJvDPZwHHISuCb4lGJfTiDFjdY4pzXHBRJ3zEzQinKVXMHyKRrjmZV6xWpyjixg3OB2ndIQ-F6CC09C7zmfgm0y_QgDdm-A-BrKz2cKwJZ_uTGhdbya_39mLW9LJ0fqXn8V9a8G7FrauMdkW1t70TmcefLeFQwm08RKd2QTm6hvHaLW4X80f8-flw9P87jnXjNR9rrDVtiQUTAMKmOZVSZStlaYGK44LQkXDMFGGlZWlqtEalC4MWGyFhYaN0c0Quwvd297EXm66ffCpUVLBiBCiqKqkooNKhy7GYKzcBbeF8C4Jloep5TC1TFPL49SSJxMbTDGJ_dqEn-h_XF_Dt4Ny</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kutluay, Sinan</creator><creator>Şahin, Ömer</creator><creator>Ece, Mehmet Şakir</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials</title><author>Kutluay, Sinan ; Şahin, Ömer ; Ece, Mehmet Şakir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b0fcf712aedaba3c4871bf9bc2e0b405126d301be378f2bdccabc5eaf0f6fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Differential thermal analysis</topic><topic>Differential thermogravimetric analysis</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Fourier transforms</topic><topic>Hysteresis loops</topic><topic>Infrared spectroscopy</topic><topic>Iron oxides</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perlite</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Spectroscopic analysis</topic><topic>Structural stability</topic><topic>Surfaces and Interfaces</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Thin Films</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutluay, Sinan</creatorcontrib><creatorcontrib>Şahin, Ömer</creatorcontrib><creatorcontrib>Ece, Mehmet Şakir</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutluay, Sinan</au><au>Şahin, Ömer</au><au>Ece, Mehmet Şakir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>128</volume><issue>3</issue><artnum>222</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this study, the fabrication of perlite-supported Fe 3 O 4 (Fe 3 O 4 /perlite), SiO 2 -coated Fe 3 O 4 /perlite (Fe 3 O 4 /perlite@SiO 2 ), and sulfanilamide-modified Fe 3 O 4 /perlite@SiO 2 (Fe 3 O 4 /perlite@SiO 2 @sulfanilamide) magnetic nanomaterials and their characterization by various spectroscopic techniques were presented. For this purpose, first, Fe 3 O 4 /perlite was fabricated via the co-precipitation method. Then, Fe 3 O 4 /perlite@SiO 2 and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide nanomaterials were fabricated using the sol–gel method. The structural properties of the fabricated nanomaterials were characterized using Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis-differential thermal analysis, and X-ray diffraction (XRD) analyses. The SEM, SEM–EDX, FTIR, and XRD analyses revealed that the fabrication and surface coatings of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were successfully performed. It was concluded that the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. According to the BET analysis, it was found that the specific surface areas of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 8.09, 12.71, and 5.89 m 2 /g, respectively. The average pore radius of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 9.68, 7.91, and 34.69 nm, respectively, using the Barrett-Joyner-Halenda method. Moreover, the half-pore widths of the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were 2.27, 1.58, and 17.99 nm, respectively, using the density functional theory method. Furthermore, in light of characterization findings, the Fe 3 O 4 /perlite, Fe 3 O 4 /perlite@SiO 2 , and Fe 3 O 4 /perlite@SiO 2 @sulfanilamide were in crystalline cubic spinel form, and they had mechanical and thermal stability and a mesoporous structure. Within the framework of the results, these developed nanomaterials, which have potential in many applications, such as sustainable technologies and environmental safety technologies, were brought to the attention of related fields. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-022-05369-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2022-03, Vol.128 (3), Article 222
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2631666588
source SpringerLink Journals - AutoHoldings
subjects Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Density functional theory
Differential thermal analysis
Differential thermogravimetric analysis
Energy dispersive X ray spectroscopy
Fourier transforms
Hysteresis loops
Infrared spectroscopy
Iron oxides
Machines
Manufacturing
Materials science
Nanomaterials
Nanotechnology
Optical and Electronic Materials
Perlite
Physics
Physics and Astronomy
Processes
Scanning electron microscopy
Silicon dioxide
Sol-gel processes
Spectroscopic analysis
Structural stability
Surfaces and Interfaces
Thermal stability
Thermogravimetric analysis
Thin Films
X-ray diffraction
title Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20Fe3O4/perlite,%20Fe3O4/perlite@SiO2,%20and%20Fe3O4/perlite@SiO2@sulfanilamide%20magnetic%20nanomaterials&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Kutluay,%20Sinan&rft.date=2022-03-01&rft.volume=128&rft.issue=3&rft.artnum=222&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-022-05369-4&rft_dat=%3Cproquest_cross%3E2631666588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631666588&rft_id=info:pmid/&rfr_iscdi=true