Medical image fusion using non subsampled contourlet transform and iterative joint filter

This study proposes an improved medical image fusion scheme based on components of non subsampled contourlet transform (NSCT) and iterative joint filter. Multimodal images are split into approximation and detail components using NSCT. The former are subsequently normalized and further smoothed using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022, Vol.81 (3), p.4495-4509
Hauptverfasser: Ch, M Munawwar Iqbal, Ghafoor, Abdul, Bakhshi, Asim Dilawar, Saghir, Nuwayrah Jawaid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4509
container_issue 3
container_start_page 4495
container_title Multimedia tools and applications
container_volume 81
creator Ch, M Munawwar Iqbal
Ghafoor, Abdul
Bakhshi, Asim Dilawar
Saghir, Nuwayrah Jawaid
description This study proposes an improved medical image fusion scheme based on components of non subsampled contourlet transform (NSCT) and iterative joint filter. Multimodal images are split into approximation and detail components using NSCT. The former are subsequently normalized and further smoothed using box filter. The underlying morphological structure of the smoothened components is obtained with the help of gradient operator using Wiener filter. The filtered structures are then used to compute decision map. Iterative joint filter is finally applied on the decision map along with input guidance image to compute the resultant image. Eight performance metrics as well as qualitative visual evaluation shows the efficacy of the proposed fusion scheme.
doi_str_mv 10.1007/s11042-021-11753-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631382545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631382545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-47aac5acedb2f6ce3aee9895f03680e9a0e648fbdac5d933068e2b536b2fb4c93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0jTtURa_QPGiB08hTSdLl266JlnBf2-0gjcvM8PwvPPxEnLO4ZID6KvEOVSCgeCMc60kaw7IgistmdaCH5ZaNsC0An5MTlLaAPBaiWpB3p6wH5wd6bC1a6R-n4Yp0BLDmoZSpX2X7HY3Yk_dFPK0jyNmmqMNyU9xS23o6ZAx2jx8IN1MQ8jUD2PpnJIjb8eEZ795SV5vb15W9-zx-e5hdf3InNCQWaWtdco67Dvha4fSIrZNqzzIugFsLWBdNb7rC9W3UkLdoOiUrAveVa6VS3Ixz93F6X2PKZtNuTKUlUbUsvwtVKUKJWbKxSmliN7sYnk5fhoO5ttCM1toioXmx0LTFJGcRanAYY3xb_Q_qi-BEXYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631382545</pqid></control><display><type>article</type><title>Medical image fusion using non subsampled contourlet transform and iterative joint filter</title><source>SpringerNature Journals</source><creator>Ch, M Munawwar Iqbal ; Ghafoor, Abdul ; Bakhshi, Asim Dilawar ; Saghir, Nuwayrah Jawaid</creator><creatorcontrib>Ch, M Munawwar Iqbal ; Ghafoor, Abdul ; Bakhshi, Asim Dilawar ; Saghir, Nuwayrah Jawaid</creatorcontrib><description>This study proposes an improved medical image fusion scheme based on components of non subsampled contourlet transform (NSCT) and iterative joint filter. Multimodal images are split into approximation and detail components using NSCT. The former are subsequently normalized and further smoothed using box filter. The underlying morphological structure of the smoothened components is obtained with the help of gradient operator using Wiener filter. The filtered structures are then used to compute decision map. Iterative joint filter is finally applied on the decision map along with input guidance image to compute the resultant image. Eight performance metrics as well as qualitative visual evaluation shows the efficacy of the proposed fusion scheme.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11753-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Approximation ; Computer Communication Networks ; Computer Science ; Computer vision ; Data Structures and Information Theory ; Decomposition ; Image filters ; Image processing ; Iterative methods ; Magnetic resonance imaging ; Medical imaging ; Morphology ; Multimedia ; Multimedia Information Systems ; Noise ; Performance measurement ; Special Purpose and Application-Based Systems ; Wavelet transforms ; Wiener filtering</subject><ispartof>Multimedia tools and applications, 2022, Vol.81 (3), p.4495-4509</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-47aac5acedb2f6ce3aee9895f03680e9a0e648fbdac5d933068e2b536b2fb4c93</cites><orcidid>0000-0002-9501-088X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-11753-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-11753-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ch, M Munawwar Iqbal</creatorcontrib><creatorcontrib>Ghafoor, Abdul</creatorcontrib><creatorcontrib>Bakhshi, Asim Dilawar</creatorcontrib><creatorcontrib>Saghir, Nuwayrah Jawaid</creatorcontrib><title>Medical image fusion using non subsampled contourlet transform and iterative joint filter</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This study proposes an improved medical image fusion scheme based on components of non subsampled contourlet transform (NSCT) and iterative joint filter. Multimodal images are split into approximation and detail components using NSCT. The former are subsequently normalized and further smoothed using box filter. The underlying morphological structure of the smoothened components is obtained with the help of gradient operator using Wiener filter. The filtered structures are then used to compute decision map. Iterative joint filter is finally applied on the decision map along with input guidance image to compute the resultant image. Eight performance metrics as well as qualitative visual evaluation shows the efficacy of the proposed fusion scheme.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Iterative methods</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Noise</subject><subject>Performance measurement</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Wavelet transforms</subject><subject>Wiener filtering</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0jTtURa_QPGiB08hTSdLl266JlnBf2-0gjcvM8PwvPPxEnLO4ZID6KvEOVSCgeCMc60kaw7IgistmdaCH5ZaNsC0An5MTlLaAPBaiWpB3p6wH5wd6bC1a6R-n4Yp0BLDmoZSpX2X7HY3Yk_dFPK0jyNmmqMNyU9xS23o6ZAx2jx8IN1MQ8jUD2PpnJIjb8eEZ795SV5vb15W9-zx-e5hdf3InNCQWaWtdco67Dvha4fSIrZNqzzIugFsLWBdNb7rC9W3UkLdoOiUrAveVa6VS3Ixz93F6X2PKZtNuTKUlUbUsvwtVKUKJWbKxSmliN7sYnk5fhoO5ttCM1toioXmx0LTFJGcRanAYY3xb_Q_qi-BEXYU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ch, M Munawwar Iqbal</creator><creator>Ghafoor, Abdul</creator><creator>Bakhshi, Asim Dilawar</creator><creator>Saghir, Nuwayrah Jawaid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9501-088X</orcidid></search><sort><creationdate>2022</creationdate><title>Medical image fusion using non subsampled contourlet transform and iterative joint filter</title><author>Ch, M Munawwar Iqbal ; Ghafoor, Abdul ; Bakhshi, Asim Dilawar ; Saghir, Nuwayrah Jawaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-47aac5acedb2f6ce3aee9895f03680e9a0e648fbdac5d933068e2b536b2fb4c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Iterative methods</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Noise</topic><topic>Performance measurement</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Wavelet transforms</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ch, M Munawwar Iqbal</creatorcontrib><creatorcontrib>Ghafoor, Abdul</creatorcontrib><creatorcontrib>Bakhshi, Asim Dilawar</creatorcontrib><creatorcontrib>Saghir, Nuwayrah Jawaid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ch, M Munawwar Iqbal</au><au>Ghafoor, Abdul</au><au>Bakhshi, Asim Dilawar</au><au>Saghir, Nuwayrah Jawaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical image fusion using non subsampled contourlet transform and iterative joint filter</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022</date><risdate>2022</risdate><volume>81</volume><issue>3</issue><spage>4495</spage><epage>4509</epage><pages>4495-4509</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This study proposes an improved medical image fusion scheme based on components of non subsampled contourlet transform (NSCT) and iterative joint filter. Multimodal images are split into approximation and detail components using NSCT. The former are subsequently normalized and further smoothed using box filter. The underlying morphological structure of the smoothened components is obtained with the help of gradient operator using Wiener filter. The filtered structures are then used to compute decision map. Iterative joint filter is finally applied on the decision map along with input guidance image to compute the resultant image. Eight performance metrics as well as qualitative visual evaluation shows the efficacy of the proposed fusion scheme.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11753-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9501-088X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022, Vol.81 (3), p.4495-4509
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2631382545
source SpringerNature Journals
subjects Accuracy
Approximation
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Decomposition
Image filters
Image processing
Iterative methods
Magnetic resonance imaging
Medical imaging
Morphology
Multimedia
Multimedia Information Systems
Noise
Performance measurement
Special Purpose and Application-Based Systems
Wavelet transforms
Wiener filtering
title Medical image fusion using non subsampled contourlet transform and iterative joint filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20image%20fusion%20using%20non%20subsampled%20contourlet%20transform%20and%20iterative%20joint%20filter&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Ch,%20M%20Munawwar%20Iqbal&rft.date=2022&rft.volume=81&rft.issue=3&rft.spage=4495&rft.epage=4509&rft.pages=4495-4509&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11753-8&rft_dat=%3Cproquest_cross%3E2631382545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631382545&rft_id=info:pmid/&rfr_iscdi=true