Visionary: a framework for analysis and visualization of provenance data
Provenance is recognized as a central challenge to establish the reliability and provide security in computational systems. In scientific workflows, provenance is considered essential to support experiments’ reproducibility, interpretation of results, and problem diagnosis. We consider that these re...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2022-02, Vol.64 (2), p.381-413 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 2 |
container_start_page | 381 |
container_title | Knowledge and information systems |
container_volume | 64 |
creator | de Oliveira, Weiner Braga, Regina David, José Maria N. Stroele, Victor Campos, Fernanda Castro, Gabriellla |
description | Provenance is recognized as a central challenge to establish the reliability and provide security in computational systems. In scientific workflows, provenance is considered essential to support experiments’ reproducibility, interpretation of results, and problem diagnosis. We consider that these requirements can also be used in new application domains, such as software processes and IoT. However, for a better understanding and use of provenance data, efficient and user-friendly mechanisms are needed. Ontology, complex networks, and software visualization can help in this process by generating new data insights and strategic information for decision-making. This paper presents the Visionary framework, designed to assist in the understanding and use of provenance data through ontologies, complex network analysis, and software visualization techniques. The framework captures the provenance data and generates new information using ontologies and structural analysis of the provenance graph. The visualization presents and highlights inferences and results obtained with the data analysis. Visionary is an application domain-free framework adapted to any system that uses the PROV provenance model. Evaluations were carried out, and some evidence was found that the framework assists in the understanding and analysis of provenance data when decision-making is needed. |
doi_str_mv | 10.1007/s10115-021-01645-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2630742870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630742870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5e9f409924dc664ffdf9828ca08762197d32e1d384750feabf74a4305b65bd53</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Ap4Dn6HtJNtn1JkVboeBFvYZ0k8jWdrcm20r9eqNb8ObpzYOZefOGkEuEawTQNwkBsWDAkQEqWTB1REZ5q5hAVMcHjELrU3KW0hIAtUIckdlrk5qutXF_Sy0N0a79Zxffaegita1d7VOTMnB016StXTVfts902gW6id3Ot7atPXW2t-fkJNhV8heHOSYvD_fPkxmbP00fJ3dzVgusehYKXwUJVcWlq5WSIbhQlbysLZRa5ZDaCe7RiVLqAoK3i6CllQKKhSoWrhBjcjX45vsfW596s-y2MSdNhisBWvJSQ2bxgVXHLqXog9nEZp2_NAjmpzEzNGZyL-a3MaOySAyilMntm49_1v-ovgEHbG38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630742870</pqid></control><display><type>article</type><title>Visionary: a framework for analysis and visualization of provenance data</title><source>SpringerLink Journals</source><creator>de Oliveira, Weiner ; Braga, Regina ; David, José Maria N. ; Stroele, Victor ; Campos, Fernanda ; Castro, Gabriellla</creator><creatorcontrib>de Oliveira, Weiner ; Braga, Regina ; David, José Maria N. ; Stroele, Victor ; Campos, Fernanda ; Castro, Gabriellla</creatorcontrib><description>Provenance is recognized as a central challenge to establish the reliability and provide security in computational systems. In scientific workflows, provenance is considered essential to support experiments’ reproducibility, interpretation of results, and problem diagnosis. We consider that these requirements can also be used in new application domains, such as software processes and IoT. However, for a better understanding and use of provenance data, efficient and user-friendly mechanisms are needed. Ontology, complex networks, and software visualization can help in this process by generating new data insights and strategic information for decision-making. This paper presents the Visionary framework, designed to assist in the understanding and use of provenance data through ontologies, complex network analysis, and software visualization techniques. The framework captures the provenance data and generates new information using ontologies and structural analysis of the provenance graph. The visualization presents and highlights inferences and results obtained with the data analysis. Visionary is an application domain-free framework adapted to any system that uses the PROV provenance model. Evaluations were carried out, and some evidence was found that the framework assists in the understanding and analysis of provenance data when decision-making is needed.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-021-01645-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Data analysis ; Data Mining and Knowledge Discovery ; Database Management ; Decision analysis ; Decision making ; Domains ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Network analysis ; Ontology ; Regular Paper ; Software ; Structural analysis ; Visualization</subject><ispartof>Knowledge and information systems, 2022-02, Vol.64 (2), p.381-413</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5e9f409924dc664ffdf9828ca08762197d32e1d384750feabf74a4305b65bd53</citedby><cites>FETCH-LOGICAL-c319t-f5e9f409924dc664ffdf9828ca08762197d32e1d384750feabf74a4305b65bd53</cites><orcidid>0000-0001-6296-8605 ; 0000-0002-3378-015X ; 0000-0002-4888-0778 ; 0000-0002-0763-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-021-01645-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-021-01645-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Oliveira, Weiner</creatorcontrib><creatorcontrib>Braga, Regina</creatorcontrib><creatorcontrib>David, José Maria N.</creatorcontrib><creatorcontrib>Stroele, Victor</creatorcontrib><creatorcontrib>Campos, Fernanda</creatorcontrib><creatorcontrib>Castro, Gabriellla</creatorcontrib><title>Visionary: a framework for analysis and visualization of provenance data</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Provenance is recognized as a central challenge to establish the reliability and provide security in computational systems. In scientific workflows, provenance is considered essential to support experiments’ reproducibility, interpretation of results, and problem diagnosis. We consider that these requirements can also be used in new application domains, such as software processes and IoT. However, for a better understanding and use of provenance data, efficient and user-friendly mechanisms are needed. Ontology, complex networks, and software visualization can help in this process by generating new data insights and strategic information for decision-making. This paper presents the Visionary framework, designed to assist in the understanding and use of provenance data through ontologies, complex network analysis, and software visualization techniques. The framework captures the provenance data and generates new information using ontologies and structural analysis of the provenance graph. The visualization presents and highlights inferences and results obtained with the data analysis. Visionary is an application domain-free framework adapted to any system that uses the PROV provenance model. Evaluations were carried out, and some evidence was found that the framework assists in the understanding and analysis of provenance data when decision-making is needed.</description><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Domains</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Network analysis</subject><subject>Ontology</subject><subject>Regular Paper</subject><subject>Software</subject><subject>Structural analysis</subject><subject>Visualization</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMFKAzEUDKJgrf6Ap4Dn6HtJNtn1JkVboeBFvYZ0k8jWdrcm20r9eqNb8ObpzYOZefOGkEuEawTQNwkBsWDAkQEqWTB1REZ5q5hAVMcHjELrU3KW0hIAtUIckdlrk5qutXF_Sy0N0a79Zxffaegita1d7VOTMnB016StXTVfts902gW6id3Ot7atPXW2t-fkJNhV8heHOSYvD_fPkxmbP00fJ3dzVgusehYKXwUJVcWlq5WSIbhQlbysLZRa5ZDaCe7RiVLqAoK3i6CllQKKhSoWrhBjcjX45vsfW596s-y2MSdNhisBWvJSQ2bxgVXHLqXog9nEZp2_NAjmpzEzNGZyL-a3MaOySAyilMntm49_1v-ovgEHbG38</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>de Oliveira, Weiner</creator><creator>Braga, Regina</creator><creator>David, José Maria N.</creator><creator>Stroele, Victor</creator><creator>Campos, Fernanda</creator><creator>Castro, Gabriellla</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6296-8605</orcidid><orcidid>https://orcid.org/0000-0002-3378-015X</orcidid><orcidid>https://orcid.org/0000-0002-4888-0778</orcidid><orcidid>https://orcid.org/0000-0002-0763-2698</orcidid></search><sort><creationdate>20220201</creationdate><title>Visionary: a framework for analysis and visualization of provenance data</title><author>de Oliveira, Weiner ; Braga, Regina ; David, José Maria N. ; Stroele, Victor ; Campos, Fernanda ; Castro, Gabriellla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5e9f409924dc664ffdf9828ca08762197d32e1d384750feabf74a4305b65bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Domains</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Network analysis</topic><topic>Ontology</topic><topic>Regular Paper</topic><topic>Software</topic><topic>Structural analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Weiner</creatorcontrib><creatorcontrib>Braga, Regina</creatorcontrib><creatorcontrib>David, José Maria N.</creatorcontrib><creatorcontrib>Stroele, Victor</creatorcontrib><creatorcontrib>Campos, Fernanda</creatorcontrib><creatorcontrib>Castro, Gabriellla</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Weiner</au><au>Braga, Regina</au><au>David, José Maria N.</au><au>Stroele, Victor</au><au>Campos, Fernanda</au><au>Castro, Gabriellla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visionary: a framework for analysis and visualization of provenance data</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>64</volume><issue>2</issue><spage>381</spage><epage>413</epage><pages>381-413</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Provenance is recognized as a central challenge to establish the reliability and provide security in computational systems. In scientific workflows, provenance is considered essential to support experiments’ reproducibility, interpretation of results, and problem diagnosis. We consider that these requirements can also be used in new application domains, such as software processes and IoT. However, for a better understanding and use of provenance data, efficient and user-friendly mechanisms are needed. Ontology, complex networks, and software visualization can help in this process by generating new data insights and strategic information for decision-making. This paper presents the Visionary framework, designed to assist in the understanding and use of provenance data through ontologies, complex network analysis, and software visualization techniques. The framework captures the provenance data and generates new information using ontologies and structural analysis of the provenance graph. The visualization presents and highlights inferences and results obtained with the data analysis. Visionary is an application domain-free framework adapted to any system that uses the PROV provenance model. Evaluations were carried out, and some evidence was found that the framework assists in the understanding and analysis of provenance data when decision-making is needed.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-021-01645-6</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-6296-8605</orcidid><orcidid>https://orcid.org/0000-0002-3378-015X</orcidid><orcidid>https://orcid.org/0000-0002-4888-0778</orcidid><orcidid>https://orcid.org/0000-0002-0763-2698</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2022-02, Vol.64 (2), p.381-413 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_2630742870 |
source | SpringerLink Journals |
subjects | Computer Science Data analysis Data Mining and Knowledge Discovery Database Management Decision analysis Decision making Domains Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Network analysis Ontology Regular Paper Software Structural analysis Visualization |
title | Visionary: a framework for analysis and visualization of provenance data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visionary:%20a%20framework%20for%20analysis%20and%20visualization%20of%20provenance%20data&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=de%20Oliveira,%20Weiner&rft.date=2022-02-01&rft.volume=64&rft.issue=2&rft.spage=381&rft.epage=413&rft.pages=381-413&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-021-01645-6&rft_dat=%3Cproquest_cross%3E2630742870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630742870&rft_id=info:pmid/&rfr_iscdi=true |