Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach
Due to their low density, natural fibers have increasingly found application in the development of systems such as wind turbine blades, airplane wing spar where flexural strength is a strong criterion for material selection. Although different researchers have studied the mechanical properties of su...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-03, Vol.119 (3-4), p.2077-2088 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2088 |
---|---|
container_issue | 3-4 |
container_start_page | 2077 |
container_title | International journal of advanced manufacturing technology |
container_volume | 119 |
creator | Samuel, Bassey Okon Sumaila, Malachy Dan-Asabe, Bashar |
description | Due to their low density, natural fibers have increasingly found application in the development of systems such as wind turbine blades, airplane wing spar where flexural strength is a strong criterion for material selection. Although different researchers have studied the mechanical properties of such natural fiber composites, none has focused on the optimization of the flexural strength of pineapple leaf fiber (PALF)/glass fiber (GF) reinforced epoxy hybrid composite. This study applied the Taguchi and general regression analysis method in the optimization and modeling of the flexural strength of the P
x
G
y
E
z
composite. Flexural strength of 144.5 MPa at an optimum development parameter of PALF at 20% volume content, GF at 20% volume content, and fiber length of 25 mm. Analysis of variance and regression analysis was also employed to describe and model the flexural behavior of the developed composite. The PALF fiber showed to have a higher contribution to the flexural strength of the material. The equation developed to model the flexural behavior of the material showed a good correlation between the simulated value and the experimental values of the flexural strength at different combinations of manufacturing parameters. |
doi_str_mv | 10.1007/s00170-021-08377-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2630688671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630688671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2345-41516e4cc75f6f3f854414215c7b98d0461c12522153896d02a266cc27f6a4db3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsv4CrgRhejuSe6E6kXUHSh65Bmkk5kOhmTKbR9CJ_Z6AjuXP23c84PHwDHGJ1jhORFRghLVCGCK6SolBXfARPMKK0ownwXTBARqqJSqH1wkPN7kQss1AR8Pplu5Y0dVil0Cxg9NLAzZTIt9GHu0sWiNTmPPWw28xRqmFzofEzW1bCP7WZZLjYu-5jD4ODpy_puM9uewaKATVg00Ldu_ROYh-S6xdBcQdPB2A9hGbZmCLGDpu9TNLY5BHvetNkd_dYpeLudvd7cV4_Pdw8314-VJZTximGOhWPWSu6Fp15xxjAjmFs5v1Q1YgJbTDgpG6ouRY2IIUJYS6QXhtVzOgUnY255-7FyedDvcZW68lITQZFQSkhcVGRU2RRzTs7rPoWlSRuNkf7mrkfuunDXP9w1LyY6mnL_jdSlv-h_XF8K6IcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630688671</pqid></control><display><type>article</type><title>Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach</title><source>SpringerLink Journals</source><creator>Samuel, Bassey Okon ; Sumaila, Malachy ; Dan-Asabe, Bashar</creator><creatorcontrib>Samuel, Bassey Okon ; Sumaila, Malachy ; Dan-Asabe, Bashar</creatorcontrib><description>Due to their low density, natural fibers have increasingly found application in the development of systems such as wind turbine blades, airplane wing spar where flexural strength is a strong criterion for material selection. Although different researchers have studied the mechanical properties of such natural fiber composites, none has focused on the optimization of the flexural strength of pineapple leaf fiber (PALF)/glass fiber (GF) reinforced epoxy hybrid composite. This study applied the Taguchi and general regression analysis method in the optimization and modeling of the flexural strength of the P
x
G
y
E
z
composite. Flexural strength of 144.5 MPa at an optimum development parameter of PALF at 20% volume content, GF at 20% volume content, and fiber length of 25 mm. Analysis of variance and regression analysis was also employed to describe and model the flexural behavior of the developed composite. The PALF fiber showed to have a higher contribution to the flexural strength of the material. The equation developed to model the flexural behavior of the material showed a good correlation between the simulated value and the experimental values of the flexural strength at different combinations of manufacturing parameters.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-08377-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Fiber composites ; Flexural strength ; Glass fiber reinforced plastics ; Glass-epoxy composites ; Hybrid composites ; Industrial and Production Engineering ; Manufacturing ; Materials selection ; Mathematical models ; Mechanical Engineering ; Mechanical properties ; Media Management ; Optimization ; Original Article ; Parameters ; Polymer matrix composites ; Regression analysis ; Turbine blades ; Variance analysis ; Wind turbines ; Wing spars</subject><ispartof>International journal of advanced manufacturing technology, 2022-03, Vol.119 (3-4), p.2077-2088</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2345-41516e4cc75f6f3f854414215c7b98d0461c12522153896d02a266cc27f6a4db3</citedby><cites>FETCH-LOGICAL-c2345-41516e4cc75f6f3f854414215c7b98d0461c12522153896d02a266cc27f6a4db3</cites><orcidid>0000-0001-9104-7063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-08377-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-08377-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Samuel, Bassey Okon</creatorcontrib><creatorcontrib>Sumaila, Malachy</creatorcontrib><creatorcontrib>Dan-Asabe, Bashar</creatorcontrib><title>Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Due to their low density, natural fibers have increasingly found application in the development of systems such as wind turbine blades, airplane wing spar where flexural strength is a strong criterion for material selection. Although different researchers have studied the mechanical properties of such natural fiber composites, none has focused on the optimization of the flexural strength of pineapple leaf fiber (PALF)/glass fiber (GF) reinforced epoxy hybrid composite. This study applied the Taguchi and general regression analysis method in the optimization and modeling of the flexural strength of the P
x
G
y
E
z
composite. Flexural strength of 144.5 MPa at an optimum development parameter of PALF at 20% volume content, GF at 20% volume content, and fiber length of 25 mm. Analysis of variance and regression analysis was also employed to describe and model the flexural behavior of the developed composite. The PALF fiber showed to have a higher contribution to the flexural strength of the material. The equation developed to model the flexural behavior of the material showed a good correlation between the simulated value and the experimental values of the flexural strength at different combinations of manufacturing parameters.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Fiber composites</subject><subject>Flexural strength</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass-epoxy composites</subject><subject>Hybrid composites</subject><subject>Industrial and Production Engineering</subject><subject>Manufacturing</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Polymer matrix composites</subject><subject>Regression analysis</subject><subject>Turbine blades</subject><subject>Variance analysis</subject><subject>Wind turbines</subject><subject>Wing spars</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEYhYMoWKsv4CrgRhejuSe6E6kXUHSh65Bmkk5kOhmTKbR9CJ_Z6AjuXP23c84PHwDHGJ1jhORFRghLVCGCK6SolBXfARPMKK0ownwXTBARqqJSqH1wkPN7kQss1AR8Pplu5Y0dVil0Cxg9NLAzZTIt9GHu0sWiNTmPPWw28xRqmFzofEzW1bCP7WZZLjYu-5jD4ODpy_puM9uewaKATVg00Ldu_ROYh-S6xdBcQdPB2A9hGbZmCLGDpu9TNLY5BHvetNkd_dYpeLudvd7cV4_Pdw8314-VJZTximGOhWPWSu6Fp15xxjAjmFs5v1Q1YgJbTDgpG6ouRY2IIUJYS6QXhtVzOgUnY255-7FyedDvcZW68lITQZFQSkhcVGRU2RRzTs7rPoWlSRuNkf7mrkfuunDXP9w1LyY6mnL_jdSlv-h_XF8K6IcE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Samuel, Bassey Okon</creator><creator>Sumaila, Malachy</creator><creator>Dan-Asabe, Bashar</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9104-7063</orcidid></search><sort><creationdate>20220301</creationdate><title>Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach</title><author>Samuel, Bassey Okon ; Sumaila, Malachy ; Dan-Asabe, Bashar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2345-41516e4cc75f6f3f854414215c7b98d0461c12522153896d02a266cc27f6a4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Fiber composites</topic><topic>Flexural strength</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass-epoxy composites</topic><topic>Hybrid composites</topic><topic>Industrial and Production Engineering</topic><topic>Manufacturing</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Polymer matrix composites</topic><topic>Regression analysis</topic><topic>Turbine blades</topic><topic>Variance analysis</topic><topic>Wind turbines</topic><topic>Wing spars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Bassey Okon</creatorcontrib><creatorcontrib>Sumaila, Malachy</creatorcontrib><creatorcontrib>Dan-Asabe, Bashar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Bassey Okon</au><au>Sumaila, Malachy</au><au>Dan-Asabe, Bashar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>119</volume><issue>3-4</issue><spage>2077</spage><epage>2088</epage><pages>2077-2088</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Due to their low density, natural fibers have increasingly found application in the development of systems such as wind turbine blades, airplane wing spar where flexural strength is a strong criterion for material selection. Although different researchers have studied the mechanical properties of such natural fiber composites, none has focused on the optimization of the flexural strength of pineapple leaf fiber (PALF)/glass fiber (GF) reinforced epoxy hybrid composite. This study applied the Taguchi and general regression analysis method in the optimization and modeling of the flexural strength of the P
x
G
y
E
z
composite. Flexural strength of 144.5 MPa at an optimum development parameter of PALF at 20% volume content, GF at 20% volume content, and fiber length of 25 mm. Analysis of variance and regression analysis was also employed to describe and model the flexural behavior of the developed composite. The PALF fiber showed to have a higher contribution to the flexural strength of the material. The equation developed to model the flexural behavior of the material showed a good correlation between the simulated value and the experimental values of the flexural strength at different combinations of manufacturing parameters.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-08377-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9104-7063</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2022-03, Vol.119 (3-4), p.2077-2088 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2630688671 |
source | SpringerLink Journals |
subjects | CAE) and Design Computer-Aided Engineering (CAD Engineering Fiber composites Flexural strength Glass fiber reinforced plastics Glass-epoxy composites Hybrid composites Industrial and Production Engineering Manufacturing Materials selection Mathematical models Mechanical Engineering Mechanical properties Media Management Optimization Original Article Parameters Polymer matrix composites Regression analysis Turbine blades Variance analysis Wind turbines Wing spars |
title | Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20of%20a%20natural%20fiber/glass%20fiber%20hybrid%20reinforced%20polymer%20composite%20(PxGyEz)%20for%20high%20flexural%20strength:%20an%20optimization%20approach&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Samuel,%20Bassey%20Okon&rft.date=2022-03-01&rft.volume=119&rft.issue=3-4&rft.spage=2077&rft.epage=2088&rft.pages=2077-2088&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-08377-5&rft_dat=%3Cproquest_cross%3E2630688671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630688671&rft_id=info:pmid/&rfr_iscdi=true |