Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods

Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental geochemistry and health 2022-02, Vol.44 (2), p.511-526
Hauptverfasser: Linnik, Vitaly G., Saveliev, Anatoly A., Bauer, Tatiana V., Minkina, Tatiana M., Mandzhieva, Saglara S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 2
container_start_page 511
container_title Environmental geochemistry and health
container_volume 44
creator Linnik, Vitaly G.
Saveliev, Anatoly A.
Bauer, Tatiana V.
Minkina, Tatiana M.
Mandzhieva, Saglara S.
description Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference tree (CIT), were used to identify patterns and potential sources of heavy metals (Co, Ni, Cu, Cr, Pb, MnO, and Zn). The investigation was carried out on 81 sample points, using 20 testing parameters. A strong positive correlation found among Ni, Cu, Zn, and HCA results has confirmed the common origin of the elements from waste discharge. Hierarchical CA divided the 81 test sites into 5 classes based on the soil quality and HMs contamination similarity. Regression trees for Cr, Pb, Zn, and Cu were verified by the splitting factor including HMs content and soil chemistry factors. The CIT has revealed that the elements (Cr, Pb, Zn, and Cu) concentration values are split at the first level by some other metal, indicating common anthropogenic impact resulting from industrial waste discharges. The factors at the next hierarchical level of splitting, in addition to the HMs, include compounds belonging to soil chemistry variables (SiO 2 , Al 2 O 3 , and K 2 O). The CIT nonlinear regression model is in good agreement with the data: R 2 values for log-transformed concentrations of Cr, Pb, Zn, and Cu are equal to 0.775; 0.774; 0.775; 0.804, respectively.
doi_str_mv 10.1007/s10653-021-00853-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2630554537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630554537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b33a0135cb7e7497b3a9acd9bc968b8943bcc63568d2c5c830c42efd8fbb27463</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7rj6BTxIwMsKtlYnnU7nOCz-gwFh0XNI0umZ7E4nayo97HwRP69ZZ9Wbpyqo33sP6hHysoV3LYB8jy30gjfA2gZgqNvdI7JqheQNUwN_TFbAetV00LEz8gzxGgCU7Ian5IzzHhQDuSI_19HsjxiQmjhSg-gRZx8LTRPdeXM40tkXs6cuxWLmEE0JKdIQadl5egguxFCO9_DG3Hi6royJeJM8vbhKWNKBZr-tirf0akEM5g1dMMQtnZd9CQeTgymeYqmuWIKrOTVtl0Z8Tp5MZo_-xcM8J98_fvh2-bnZfP305XK9aRyXojSWcwMtF85KLzslLTfKuFFZp_rBDqrj1rmei34YmRNu4OA65qdxmKxlsuv5OXl98r3N6cfisejrtOT6EtSs5yBEJ7isFDtRLifE7Cd9m8Ns8lG3oO-r0KcqdK1C_65C31XRqwfrxc5-_Cv58_sK8BOA9RS3Pv_L_o_tLzGhmC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630554537</pqid></control><display><type>article</type><title>Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Linnik, Vitaly G. ; Saveliev, Anatoly A. ; Bauer, Tatiana V. ; Minkina, Tatiana M. ; Mandzhieva, Saglara S.</creator><creatorcontrib>Linnik, Vitaly G. ; Saveliev, Anatoly A. ; Bauer, Tatiana V. ; Minkina, Tatiana M. ; Mandzhieva, Saglara S.</creatorcontrib><description>Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference tree (CIT), were used to identify patterns and potential sources of heavy metals (Co, Ni, Cu, Cr, Pb, MnO, and Zn). The investigation was carried out on 81 sample points, using 20 testing parameters. A strong positive correlation found among Ni, Cu, Zn, and HCA results has confirmed the common origin of the elements from waste discharge. Hierarchical CA divided the 81 test sites into 5 classes based on the soil quality and HMs contamination similarity. Regression trees for Cr, Pb, Zn, and Cu were verified by the splitting factor including HMs content and soil chemistry factors. The CIT has revealed that the elements (Cr, Pb, Zn, and Cu) concentration values are split at the first level by some other metal, indicating common anthropogenic impact resulting from industrial waste discharges. The factors at the next hierarchical level of splitting, in addition to the HMs, include compounds belonging to soil chemistry variables (SiO 2 , Al 2 O 3 , and K 2 O). The CIT nonlinear regression model is in good agreement with the data: R 2 values for log-transformed concentrations of Cr, Pb, Zn, and Cu are equal to 0.775; 0.774; 0.775; 0.804, respectively.</description><identifier>ISSN: 0269-4042</identifier><identifier>EISSN: 1573-2983</identifier><identifier>DOI: 10.1007/s10653-021-00853-x</identifier><identifier>PMID: 33609207</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum oxide ; Anthropogenic factors ; Chemistry ; China ; Chromium ; Cluster analysis ; Contamination ; Copper ; Correlation analysis ; Discharge ; Earth and Environmental Science ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Monitoring - methods ; Geochemistry ; Heavy metals ; Human influences ; Industrial wastes ; Lakes ; Lead ; Loam soils ; Machine learning ; Metals ; Metals, Heavy - analysis ; Multivariate analysis ; Multivariate statistical analysis ; Nickel ; Original Paper ; Pollutants ; Pollution ; Public Health ; Regression analysis ; Regression models ; Risk Assessment ; Silica ; Silicon dioxide ; Silicon Dioxide - analysis ; Soil ; Soil - chemistry ; Soil contamination ; Soil Pollutants - analysis ; Soil pollution ; Soil quality ; Soil Science &amp; Conservation ; Soils ; Splitting ; Statistical analysis ; Statistical methods ; Statistics ; Terrestrial Pollution ; Zinc</subject><ispartof>Environmental geochemistry and health, 2022-02, Vol.44 (2), p.511-526</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b33a0135cb7e7497b3a9acd9bc968b8943bcc63568d2c5c830c42efd8fbb27463</citedby><cites>FETCH-LOGICAL-c375t-b33a0135cb7e7497b3a9acd9bc968b8943bcc63568d2c5c830c42efd8fbb27463</cites><orcidid>0000-0002-6270-7744 ; 0000-0001-6000-2209 ; 0000-0002-1667-3811 ; 0000-0003-3022-0883 ; 0000-0002-6751-8686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10653-021-00853-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10653-021-00853-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33609207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linnik, Vitaly G.</creatorcontrib><creatorcontrib>Saveliev, Anatoly A.</creatorcontrib><creatorcontrib>Bauer, Tatiana V.</creatorcontrib><creatorcontrib>Minkina, Tatiana M.</creatorcontrib><creatorcontrib>Mandzhieva, Saglara S.</creatorcontrib><title>Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods</title><title>Environmental geochemistry and health</title><addtitle>Environ Geochem Health</addtitle><addtitle>Environ Geochem Health</addtitle><description>Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference tree (CIT), were used to identify patterns and potential sources of heavy metals (Co, Ni, Cu, Cr, Pb, MnO, and Zn). The investigation was carried out on 81 sample points, using 20 testing parameters. A strong positive correlation found among Ni, Cu, Zn, and HCA results has confirmed the common origin of the elements from waste discharge. Hierarchical CA divided the 81 test sites into 5 classes based on the soil quality and HMs contamination similarity. Regression trees for Cr, Pb, Zn, and Cu were verified by the splitting factor including HMs content and soil chemistry factors. The CIT has revealed that the elements (Cr, Pb, Zn, and Cu) concentration values are split at the first level by some other metal, indicating common anthropogenic impact resulting from industrial waste discharges. The factors at the next hierarchical level of splitting, in addition to the HMs, include compounds belonging to soil chemistry variables (SiO 2 , Al 2 O 3 , and K 2 O). The CIT nonlinear regression model is in good agreement with the data: R 2 values for log-transformed concentrations of Cr, Pb, Zn, and Cu are equal to 0.775; 0.774; 0.775; 0.804, respectively.</description><subject>Aluminum oxide</subject><subject>Anthropogenic factors</subject><subject>Chemistry</subject><subject>China</subject><subject>Chromium</subject><subject>Cluster analysis</subject><subject>Contamination</subject><subject>Copper</subject><subject>Correlation analysis</subject><subject>Discharge</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Monitoring - methods</subject><subject>Geochemistry</subject><subject>Heavy metals</subject><subject>Human influences</subject><subject>Industrial wastes</subject><subject>Lakes</subject><subject>Lead</subject><subject>Loam soils</subject><subject>Machine learning</subject><subject>Metals</subject><subject>Metals, Heavy - analysis</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Nickel</subject><subject>Original Paper</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Public Health</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Risk Assessment</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - analysis</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil contamination</subject><subject>Soil Pollutants - analysis</subject><subject>Soil pollution</subject><subject>Soil quality</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Splitting</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Terrestrial Pollution</subject><subject>Zinc</subject><issn>0269-4042</issn><issn>1573-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU-LFDEQxYMo7rj6BTxIwMsKtlYnnU7nOCz-gwFh0XNI0umZ7E4nayo97HwRP69ZZ9Wbpyqo33sP6hHysoV3LYB8jy30gjfA2gZgqNvdI7JqheQNUwN_TFbAetV00LEz8gzxGgCU7Ian5IzzHhQDuSI_19HsjxiQmjhSg-gRZx8LTRPdeXM40tkXs6cuxWLmEE0JKdIQadl5egguxFCO9_DG3Hi6royJeJM8vbhKWNKBZr-tirf0akEM5g1dMMQtnZd9CQeTgymeYqmuWIKrOTVtl0Z8Tp5MZo_-xcM8J98_fvh2-bnZfP305XK9aRyXojSWcwMtF85KLzslLTfKuFFZp_rBDqrj1rmei34YmRNu4OA65qdxmKxlsuv5OXl98r3N6cfisejrtOT6EtSs5yBEJ7isFDtRLifE7Cd9m8Ns8lG3oO-r0KcqdK1C_65C31XRqwfrxc5-_Cv58_sK8BOA9RS3Pv_L_o_tLzGhmC4</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Linnik, Vitaly G.</creator><creator>Saveliev, Anatoly A.</creator><creator>Bauer, Tatiana V.</creator><creator>Minkina, Tatiana M.</creator><creator>Mandzhieva, Saglara S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6270-7744</orcidid><orcidid>https://orcid.org/0000-0001-6000-2209</orcidid><orcidid>https://orcid.org/0000-0002-1667-3811</orcidid><orcidid>https://orcid.org/0000-0003-3022-0883</orcidid><orcidid>https://orcid.org/0000-0002-6751-8686</orcidid></search><sort><creationdate>20220201</creationdate><title>Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods</title><author>Linnik, Vitaly G. ; Saveliev, Anatoly A. ; Bauer, Tatiana V. ; Minkina, Tatiana M. ; Mandzhieva, Saglara S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b33a0135cb7e7497b3a9acd9bc968b8943bcc63568d2c5c830c42efd8fbb27463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Anthropogenic factors</topic><topic>Chemistry</topic><topic>China</topic><topic>Chromium</topic><topic>Cluster analysis</topic><topic>Contamination</topic><topic>Copper</topic><topic>Correlation analysis</topic><topic>Discharge</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Monitoring - methods</topic><topic>Geochemistry</topic><topic>Heavy metals</topic><topic>Human influences</topic><topic>Industrial wastes</topic><topic>Lakes</topic><topic>Lead</topic><topic>Loam soils</topic><topic>Machine learning</topic><topic>Metals</topic><topic>Metals, Heavy - analysis</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Nickel</topic><topic>Original Paper</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Public Health</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Risk Assessment</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - analysis</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil contamination</topic><topic>Soil Pollutants - analysis</topic><topic>Soil pollution</topic><topic>Soil quality</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Splitting</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Terrestrial Pollution</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linnik, Vitaly G.</creatorcontrib><creatorcontrib>Saveliev, Anatoly A.</creatorcontrib><creatorcontrib>Bauer, Tatiana V.</creatorcontrib><creatorcontrib>Minkina, Tatiana M.</creatorcontrib><creatorcontrib>Mandzhieva, Saglara S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental geochemistry and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linnik, Vitaly G.</au><au>Saveliev, Anatoly A.</au><au>Bauer, Tatiana V.</au><au>Minkina, Tatiana M.</au><au>Mandzhieva, Saglara S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods</atitle><jtitle>Environmental geochemistry and health</jtitle><stitle>Environ Geochem Health</stitle><addtitle>Environ Geochem Health</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>511</spage><epage>526</epage><pages>511-526</pages><issn>0269-4042</issn><eissn>1573-2983</eissn><abstract>Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference tree (CIT), were used to identify patterns and potential sources of heavy metals (Co, Ni, Cu, Cr, Pb, MnO, and Zn). The investigation was carried out on 81 sample points, using 20 testing parameters. A strong positive correlation found among Ni, Cu, Zn, and HCA results has confirmed the common origin of the elements from waste discharge. Hierarchical CA divided the 81 test sites into 5 classes based on the soil quality and HMs contamination similarity. Regression trees for Cr, Pb, Zn, and Cu were verified by the splitting factor including HMs content and soil chemistry factors. The CIT has revealed that the elements (Cr, Pb, Zn, and Cu) concentration values are split at the first level by some other metal, indicating common anthropogenic impact resulting from industrial waste discharges. The factors at the next hierarchical level of splitting, in addition to the HMs, include compounds belonging to soil chemistry variables (SiO 2 , Al 2 O 3 , and K 2 O). The CIT nonlinear regression model is in good agreement with the data: R 2 values for log-transformed concentrations of Cr, Pb, Zn, and Cu are equal to 0.775; 0.774; 0.775; 0.804, respectively.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33609207</pmid><doi>10.1007/s10653-021-00853-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6270-7744</orcidid><orcidid>https://orcid.org/0000-0001-6000-2209</orcidid><orcidid>https://orcid.org/0000-0002-1667-3811</orcidid><orcidid>https://orcid.org/0000-0003-3022-0883</orcidid><orcidid>https://orcid.org/0000-0002-6751-8686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0269-4042
ispartof Environmental geochemistry and health, 2022-02, Vol.44 (2), p.511-526
issn 0269-4042
1573-2983
language eng
recordid cdi_proquest_journals_2630554537
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Anthropogenic factors
Chemistry
China
Chromium
Cluster analysis
Contamination
Copper
Correlation analysis
Discharge
Earth and Environmental Science
Environment
Environmental Chemistry
Environmental Health
Environmental Monitoring - methods
Geochemistry
Heavy metals
Human influences
Industrial wastes
Lakes
Lead
Loam soils
Machine learning
Metals
Metals, Heavy - analysis
Multivariate analysis
Multivariate statistical analysis
Nickel
Original Paper
Pollutants
Pollution
Public Health
Regression analysis
Regression models
Risk Assessment
Silica
Silicon dioxide
Silicon Dioxide - analysis
Soil
Soil - chemistry
Soil contamination
Soil Pollutants - analysis
Soil pollution
Soil quality
Soil Science & Conservation
Soils
Splitting
Statistical analysis
Statistical methods
Statistics
Terrestrial Pollution
Zinc
title Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20assessment%20of%20heavy%20metal%20contamination%20in%20the%20vicinity%20of%20Lake%20Atamanskoe%20(Rostov%20region,%20Russia)%20using%20multivariate%20statistical%20methods&rft.jtitle=Environmental%20geochemistry%20and%20health&rft.au=Linnik,%20Vitaly%20G.&rft.date=2022-02-01&rft.volume=44&rft.issue=2&rft.spage=511&rft.epage=526&rft.pages=511-526&rft.issn=0269-4042&rft.eissn=1573-2983&rft_id=info:doi/10.1007/s10653-021-00853-x&rft_dat=%3Cproquest_cross%3E2630554537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630554537&rft_id=info:pmid/33609207&rfr_iscdi=true