CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment
[Display omitted] •High-value utilization of herbal (licorice) residues as CO2 adsorbents.•LNAC-600 exhibits excellent CO2 adsorption capacity and selectivity.•N content performs a sound correlation with CO2 adsorption capacity. For high-value and environmentally friendly utilization of industrial h...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2022-03, Vol.311, p.122507, Article 122507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122507 |
container_title | Fuel (Guildford) |
container_volume | 311 |
creator | Zhou, Yabin Tan, Peng He, Ziqian Zhang, Cheng Fang, Qingyan Chen, Gang |
description | [Display omitted]
•High-value utilization of herbal (licorice) residues as CO2 adsorbents.•LNAC-600 exhibits excellent CO2 adsorption capacity and selectivity.•N content performs a sound correlation with CO2 adsorption capacity.
For high-value and environmentally friendly utilization of industrial herbal waste, a series of licorice residue-derived porous carbons were prepared with nitrogen-doped hydrothermal carbonization and KOH activation. The N-doped porous carbon activated at 600 °C exhibited excellent CO2 adsorption capacity (6.43 mmol/g at 0 °C and 1 bar, 3.89 mmol/g at 25 °C and 1 bar), high CO2/N2 selectivity (21.3), and high initial isosteric adsorption heat (28.7 kJ/mol). The excellent CO2 adsorption of the sorbent can be ascribed to its high microporosity and nitrogen content. At 0 °C and 1 bar, the ultramicropore volume below 0.7 nm contributes almost equally with the N content. However, the N content plays a dominative role at higher temperature or lower pressure. N content, especially N-5 content, performs a sound correlation with the CO2 adsorption capacity under ambient condition. |
doi_str_mv | 10.1016/j.fuel.2021.122507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2630530611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121023772</els_id><sourcerecordid>2630530611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-dac6f3d6c2f1942978c34df8710118afe6b3517653d022e07b4a55abba192e293</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4Crgemoucyu4keINCt3oOmSSE5uhnYwnmULf3pS6dnXg8H_n8hFyz9mCM14_9gs3wW4hmOALLkTFmgsy420ji4ZX8pLMWE4VQtb8mtzE2DPGmrYqZwRXG0G1jQHH5MNAR0AXcK8HAzQ4OviE4RuGwoYRLB0DhilSo7HLWQvoD7nrMOzpzpuAPlMI0dsJaHek26PFkLaQ5-1oQtBpD0O6JVdO7yLc_dU5-Xp9-Vy9F-vN28fqeV0YKdpUWG1qJ21thOPLUiyb1sjSurbJD_NWO6g7WfGmrqRlQgBrulJXle46zZcCxFLOycN57ojhZ4KYVB8mHPJKJWrJKslqznNKnFMGQ4wITo3o9xqPijN1cqt6dXKrTm7V2W2Gns4Q5PsPHlBF4yE7sx7BJGWD_w__BeHDhAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630530611</pqid></control><display><type>article</type><title>CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Zhou, Yabin ; Tan, Peng ; He, Ziqian ; Zhang, Cheng ; Fang, Qingyan ; Chen, Gang</creator><creatorcontrib>Zhou, Yabin ; Tan, Peng ; He, Ziqian ; Zhang, Cheng ; Fang, Qingyan ; Chen, Gang</creatorcontrib><description>[Display omitted]
•High-value utilization of herbal (licorice) residues as CO2 adsorbents.•LNAC-600 exhibits excellent CO2 adsorption capacity and selectivity.•N content performs a sound correlation with CO2 adsorption capacity.
For high-value and environmentally friendly utilization of industrial herbal waste, a series of licorice residue-derived porous carbons were prepared with nitrogen-doped hydrothermal carbonization and KOH activation. The N-doped porous carbon activated at 600 °C exhibited excellent CO2 adsorption capacity (6.43 mmol/g at 0 °C and 1 bar, 3.89 mmol/g at 25 °C and 1 bar), high CO2/N2 selectivity (21.3), and high initial isosteric adsorption heat (28.7 kJ/mol). The excellent CO2 adsorption of the sorbent can be ascribed to its high microporosity and nitrogen content. At 0 °C and 1 bar, the ultramicropore volume below 0.7 nm contributes almost equally with the N content. However, the N content plays a dominative role at higher temperature or lower pressure. N content, especially N-5 content, performs a sound correlation with the CO2 adsorption capacity under ambient condition.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.122507</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated carbon ; Adsorbent ; Adsorption ; Carbon dioxide ; CO2 adsorption ; Hydrothermal treatment ; Licorice residue ; Microporosity ; Nitrogen ; Porous carbon ; Residues ; Selectivity ; Sorbents</subject><ispartof>Fuel (Guildford), 2022-03, Vol.311, p.122507, Article 122507</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-dac6f3d6c2f1942978c34df8710118afe6b3517653d022e07b4a55abba192e293</citedby><cites>FETCH-LOGICAL-c328t-dac6f3d6c2f1942978c34df8710118afe6b3517653d022e07b4a55abba192e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.122507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Zhou, Yabin</creatorcontrib><creatorcontrib>Tan, Peng</creatorcontrib><creatorcontrib>He, Ziqian</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Fang, Qingyan</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><title>CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment</title><title>Fuel (Guildford)</title><description>[Display omitted]
•High-value utilization of herbal (licorice) residues as CO2 adsorbents.•LNAC-600 exhibits excellent CO2 adsorption capacity and selectivity.•N content performs a sound correlation with CO2 adsorption capacity.
For high-value and environmentally friendly utilization of industrial herbal waste, a series of licorice residue-derived porous carbons were prepared with nitrogen-doped hydrothermal carbonization and KOH activation. The N-doped porous carbon activated at 600 °C exhibited excellent CO2 adsorption capacity (6.43 mmol/g at 0 °C and 1 bar, 3.89 mmol/g at 25 °C and 1 bar), high CO2/N2 selectivity (21.3), and high initial isosteric adsorption heat (28.7 kJ/mol). The excellent CO2 adsorption of the sorbent can be ascribed to its high microporosity and nitrogen content. At 0 °C and 1 bar, the ultramicropore volume below 0.7 nm contributes almost equally with the N content. However, the N content plays a dominative role at higher temperature or lower pressure. N content, especially N-5 content, performs a sound correlation with the CO2 adsorption capacity under ambient condition.</description><subject>Activated carbon</subject><subject>Adsorbent</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>CO2 adsorption</subject><subject>Hydrothermal treatment</subject><subject>Licorice residue</subject><subject>Microporosity</subject><subject>Nitrogen</subject><subject>Porous carbon</subject><subject>Residues</subject><subject>Selectivity</subject><subject>Sorbents</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4Crgemoucyu4keINCt3oOmSSE5uhnYwnmULf3pS6dnXg8H_n8hFyz9mCM14_9gs3wW4hmOALLkTFmgsy420ji4ZX8pLMWE4VQtb8mtzE2DPGmrYqZwRXG0G1jQHH5MNAR0AXcK8HAzQ4OviE4RuGwoYRLB0DhilSo7HLWQvoD7nrMOzpzpuAPlMI0dsJaHek26PFkLaQ5-1oQtBpD0O6JVdO7yLc_dU5-Xp9-Vy9F-vN28fqeV0YKdpUWG1qJ21thOPLUiyb1sjSurbJD_NWO6g7WfGmrqRlQgBrulJXle46zZcCxFLOycN57ojhZ4KYVB8mHPJKJWrJKslqznNKnFMGQ4wITo3o9xqPijN1cqt6dXKrTm7V2W2Gns4Q5PsPHlBF4yE7sx7BJGWD_w__BeHDhAk</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhou, Yabin</creator><creator>Tan, Peng</creator><creator>He, Ziqian</creator><creator>Zhang, Cheng</creator><creator>Fang, Qingyan</creator><creator>Chen, Gang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220301</creationdate><title>CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment</title><author>Zhou, Yabin ; Tan, Peng ; He, Ziqian ; Zhang, Cheng ; Fang, Qingyan ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-dac6f3d6c2f1942978c34df8710118afe6b3517653d022e07b4a55abba192e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Adsorbent</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>CO2 adsorption</topic><topic>Hydrothermal treatment</topic><topic>Licorice residue</topic><topic>Microporosity</topic><topic>Nitrogen</topic><topic>Porous carbon</topic><topic>Residues</topic><topic>Selectivity</topic><topic>Sorbents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yabin</creatorcontrib><creatorcontrib>Tan, Peng</creatorcontrib><creatorcontrib>He, Ziqian</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Fang, Qingyan</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yabin</au><au>Tan, Peng</au><au>He, Ziqian</au><au>Zhang, Cheng</au><au>Fang, Qingyan</au><au>Chen, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>311</volume><spage>122507</spage><pages>122507-</pages><artnum>122507</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•High-value utilization of herbal (licorice) residues as CO2 adsorbents.•LNAC-600 exhibits excellent CO2 adsorption capacity and selectivity.•N content performs a sound correlation with CO2 adsorption capacity.
For high-value and environmentally friendly utilization of industrial herbal waste, a series of licorice residue-derived porous carbons were prepared with nitrogen-doped hydrothermal carbonization and KOH activation. The N-doped porous carbon activated at 600 °C exhibited excellent CO2 adsorption capacity (6.43 mmol/g at 0 °C and 1 bar, 3.89 mmol/g at 25 °C and 1 bar), high CO2/N2 selectivity (21.3), and high initial isosteric adsorption heat (28.7 kJ/mol). The excellent CO2 adsorption of the sorbent can be ascribed to its high microporosity and nitrogen content. At 0 °C and 1 bar, the ultramicropore volume below 0.7 nm contributes almost equally with the N content. However, the N content plays a dominative role at higher temperature or lower pressure. N content, especially N-5 content, performs a sound correlation with the CO2 adsorption capacity under ambient condition.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.122507</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2022-03, Vol.311, p.122507, Article 122507 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2630530611 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Activated carbon Adsorbent Adsorption Carbon dioxide CO2 adsorption Hydrothermal treatment Licorice residue Microporosity Nitrogen Porous carbon Residues Selectivity Sorbents |
title | CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20adsorption%20performance%20of%20nitrogen-doped%20porous%20carbon%20derived%20from%20licorice%20residue%20by%20hydrothermal%20treatment&rft.jtitle=Fuel%20(Guildford)&rft.au=Zhou,%20Yabin&rft.date=2022-03-01&rft.volume=311&rft.spage=122507&rft.pages=122507-&rft.artnum=122507&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.122507&rft_dat=%3Cproquest_cross%3E2630530611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630530611&rft_id=info:pmid/&rft_els_id=S0016236121023772&rfr_iscdi=true |