M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention

The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2022-01, Vol.75, p.1
Hauptverfasser: Qu, Taiping, Wang, Xiheng, Fang, Chaowei, Mao, Li, Li, Juan, Li, Ping, Qu, Jinrong, Li, Xiuli, Xue, Huadan, Yu, Yizhou, Jin, Zhengyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 1
container_title Medical image analysis
container_volume 75
creator Qu, Taiping
Wang, Xiheng
Fang, Chaowei
Mao, Li
Li, Juan
Li, Ping
Qu, Jinrong
Li, Xiuli
Xue, Huadan
Yu, Yizhou
Jin, Zhengyu
description The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.
doi_str_mv 10.1016/j.media.2021.102232
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2630527724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630527724</sourcerecordid><originalsourceid>FETCH-proquest_journals_26305277243</originalsourceid><addsrcrecordid>eNqNjDFPwzAQRi0EEoXyC7qcxJxgn9OkYkMIxFIm9uqaXiBpYqc-h4p_j4eImemevvd0Sq2Mzo025UOXD3xoKUeNJi2IFi_UwtjSZJsC7eUfm_W1uhHptNZVUeiF-tlaeOf4CE8wTH1sM6mp55m_Wz5DE2jgsw9HaHyYxfhFwjCSqwOTgPDnwC5SbL2DfVIHSFAHLzKnzrus9-k1UIwpTeFSXTXUC9_N91bdv758PL9lY_CniSXuOj8Fl9QOS6vXWFVY2P9Vv3zXVdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630527724</pqid></control><display><type>article</type><title>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</title><source>Access via ScienceDirect (Elsevier)</source><creator>Qu, Taiping ; Wang, Xiheng ; Fang, Chaowei ; Mao, Li ; Li, Juan ; Li, Ping ; Qu, Jinrong ; Li, Xiuli ; Xue, Huadan ; Yu, Yizhou ; Jin, Zhengyu</creator><creatorcontrib>Qu, Taiping ; Wang, Xiheng ; Fang, Chaowei ; Mao, Li ; Li, Juan ; Li, Ping ; Qu, Jinrong ; Li, Xiuli ; Xue, Huadan ; Yu, Yizhou ; Jin, Zhengyu</creatorcontrib><description>The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2021.102232</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Complementation ; Information processing ; Misalignment ; Modules ; Multiphase ; Pancreas ; Phases ; Representations ; Segmentation ; Thickness</subject><ispartof>Medical image analysis, 2022-01, Vol.75, p.1</ispartof><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qu, Taiping</creatorcontrib><creatorcontrib>Wang, Xiheng</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><creatorcontrib>Mao, Li</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Qu, Jinrong</creatorcontrib><creatorcontrib>Li, Xiuli</creatorcontrib><creatorcontrib>Xue, Huadan</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><creatorcontrib>Jin, Zhengyu</creatorcontrib><title>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</title><title>Medical image analysis</title><description>The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.</description><subject>Complementation</subject><subject>Information processing</subject><subject>Misalignment</subject><subject>Modules</subject><subject>Multiphase</subject><subject>Pancreas</subject><subject>Phases</subject><subject>Representations</subject><subject>Segmentation</subject><subject>Thickness</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjDFPwzAQRi0EEoXyC7qcxJxgn9OkYkMIxFIm9uqaXiBpYqc-h4p_j4eImemevvd0Sq2Mzo025UOXD3xoKUeNJi2IFi_UwtjSZJsC7eUfm_W1uhHptNZVUeiF-tlaeOf4CE8wTH1sM6mp55m_Wz5DE2jgsw9HaHyYxfhFwjCSqwOTgPDnwC5SbL2DfVIHSFAHLzKnzrus9-k1UIwpTeFSXTXUC9_N91bdv758PL9lY_CniSXuOj8Fl9QOS6vXWFVY2P9Vv3zXVdE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Qu, Taiping</creator><creator>Wang, Xiheng</creator><creator>Fang, Chaowei</creator><creator>Mao, Li</creator><creator>Li, Juan</creator><creator>Li, Ping</creator><creator>Qu, Jinrong</creator><creator>Li, Xiuli</creator><creator>Xue, Huadan</creator><creator>Yu, Yizhou</creator><creator>Jin, Zhengyu</creator><general>Elsevier BV</general><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope></search><sort><creationdate>20220101</creationdate><title>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</title><author>Qu, Taiping ; Wang, Xiheng ; Fang, Chaowei ; Mao, Li ; Li, Juan ; Li, Ping ; Qu, Jinrong ; Li, Xiuli ; Xue, Huadan ; Yu, Yizhou ; Jin, Zhengyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26305277243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complementation</topic><topic>Information processing</topic><topic>Misalignment</topic><topic>Modules</topic><topic>Multiphase</topic><topic>Pancreas</topic><topic>Phases</topic><topic>Representations</topic><topic>Segmentation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Taiping</creatorcontrib><creatorcontrib>Wang, Xiheng</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><creatorcontrib>Mao, Li</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Qu, Jinrong</creatorcontrib><creatorcontrib>Li, Xiuli</creatorcontrib><creatorcontrib>Xue, Huadan</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><creatorcontrib>Jin, Zhengyu</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Taiping</au><au>Wang, Xiheng</au><au>Fang, Chaowei</au><au>Mao, Li</au><au>Li, Juan</au><au>Li, Ping</au><au>Qu, Jinrong</au><au>Li, Xiuli</au><au>Xue, Huadan</au><au>Yu, Yizhou</au><au>Jin, Zhengyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</atitle><jtitle>Medical image analysis</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>75</volume><spage>1</spage><pages>1-</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.media.2021.102232</doi></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2022-01, Vol.75, p.1
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_journals_2630527724
source Access via ScienceDirect (Elsevier)
subjects Complementation
Information processing
Misalignment
Modules
Multiphase
Pancreas
Phases
Representations
Segmentation
Thickness
title M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M3%20Net:%20A%20multi-scale%20multi-view%20framework%20for%20multi-phase%20pancreas%20segmentation%20based%20on%20cross-phase%20non-local%20attention&rft.jtitle=Medical%20image%20analysis&rft.au=Qu,%20Taiping&rft.date=2022-01-01&rft.volume=75&rft.spage=1&rft.pages=1-&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2021.102232&rft_dat=%3Cproquest%3E2630527724%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630527724&rft_id=info:pmid/&rfr_iscdi=true