M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention
The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2022-01, Vol.75, p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Medical image analysis |
container_volume | 75 |
creator | Qu, Taiping Wang, Xiheng Fang, Chaowei Mao, Li Li, Juan Li, Ping Qu, Jinrong Li, Xiuli Xue, Huadan Yu, Yizhou Jin, Zhengyu |
description | The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data. |
doi_str_mv | 10.1016/j.media.2021.102232 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2630527724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630527724</sourcerecordid><originalsourceid>FETCH-proquest_journals_26305277243</originalsourceid><addsrcrecordid>eNqNjDFPwzAQRi0EEoXyC7qcxJxgn9OkYkMIxFIm9uqaXiBpYqc-h4p_j4eImemevvd0Sq2Mzo025UOXD3xoKUeNJi2IFi_UwtjSZJsC7eUfm_W1uhHptNZVUeiF-tlaeOf4CE8wTH1sM6mp55m_Wz5DE2jgsw9HaHyYxfhFwjCSqwOTgPDnwC5SbL2DfVIHSFAHLzKnzrus9-k1UIwpTeFSXTXUC9_N91bdv758PL9lY_CniSXuOj8Fl9QOS6vXWFVY2P9Vv3zXVdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630527724</pqid></control><display><type>article</type><title>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</title><source>Access via ScienceDirect (Elsevier)</source><creator>Qu, Taiping ; Wang, Xiheng ; Fang, Chaowei ; Mao, Li ; Li, Juan ; Li, Ping ; Qu, Jinrong ; Li, Xiuli ; Xue, Huadan ; Yu, Yizhou ; Jin, Zhengyu</creator><creatorcontrib>Qu, Taiping ; Wang, Xiheng ; Fang, Chaowei ; Mao, Li ; Li, Juan ; Li, Ping ; Qu, Jinrong ; Li, Xiuli ; Xue, Huadan ; Yu, Yizhou ; Jin, Zhengyu</creatorcontrib><description>The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2021.102232</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Complementation ; Information processing ; Misalignment ; Modules ; Multiphase ; Pancreas ; Phases ; Representations ; Segmentation ; Thickness</subject><ispartof>Medical image analysis, 2022-01, Vol.75, p.1</ispartof><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qu, Taiping</creatorcontrib><creatorcontrib>Wang, Xiheng</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><creatorcontrib>Mao, Li</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Qu, Jinrong</creatorcontrib><creatorcontrib>Li, Xiuli</creatorcontrib><creatorcontrib>Xue, Huadan</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><creatorcontrib>Jin, Zhengyu</creatorcontrib><title>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</title><title>Medical image analysis</title><description>The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.</description><subject>Complementation</subject><subject>Information processing</subject><subject>Misalignment</subject><subject>Modules</subject><subject>Multiphase</subject><subject>Pancreas</subject><subject>Phases</subject><subject>Representations</subject><subject>Segmentation</subject><subject>Thickness</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjDFPwzAQRi0EEoXyC7qcxJxgn9OkYkMIxFIm9uqaXiBpYqc-h4p_j4eImemevvd0Sq2Mzo025UOXD3xoKUeNJi2IFi_UwtjSZJsC7eUfm_W1uhHptNZVUeiF-tlaeOf4CE8wTH1sM6mp55m_Wz5DE2jgsw9HaHyYxfhFwjCSqwOTgPDnwC5SbL2DfVIHSFAHLzKnzrus9-k1UIwpTeFSXTXUC9_N91bdv758PL9lY_CniSXuOj8Fl9QOS6vXWFVY2P9Vv3zXVdE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Qu, Taiping</creator><creator>Wang, Xiheng</creator><creator>Fang, Chaowei</creator><creator>Mao, Li</creator><creator>Li, Juan</creator><creator>Li, Ping</creator><creator>Qu, Jinrong</creator><creator>Li, Xiuli</creator><creator>Xue, Huadan</creator><creator>Yu, Yizhou</creator><creator>Jin, Zhengyu</creator><general>Elsevier BV</general><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope></search><sort><creationdate>20220101</creationdate><title>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</title><author>Qu, Taiping ; Wang, Xiheng ; Fang, Chaowei ; Mao, Li ; Li, Juan ; Li, Ping ; Qu, Jinrong ; Li, Xiuli ; Xue, Huadan ; Yu, Yizhou ; Jin, Zhengyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26305277243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complementation</topic><topic>Information processing</topic><topic>Misalignment</topic><topic>Modules</topic><topic>Multiphase</topic><topic>Pancreas</topic><topic>Phases</topic><topic>Representations</topic><topic>Segmentation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Taiping</creatorcontrib><creatorcontrib>Wang, Xiheng</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><creatorcontrib>Mao, Li</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Qu, Jinrong</creatorcontrib><creatorcontrib>Li, Xiuli</creatorcontrib><creatorcontrib>Xue, Huadan</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><creatorcontrib>Jin, Zhengyu</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Taiping</au><au>Wang, Xiheng</au><au>Fang, Chaowei</au><au>Mao, Li</au><au>Li, Juan</au><au>Li, Ping</au><au>Qu, Jinrong</au><au>Li, Xiuli</au><au>Xue, Huadan</au><au>Yu, Yizhou</au><au>Jin, Zhengyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention</atitle><jtitle>Medical image analysis</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>75</volume><spage>1</spage><pages>1-</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3 Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3 Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.media.2021.102232</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2022-01, Vol.75, p.1 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_journals_2630527724 |
source | Access via ScienceDirect (Elsevier) |
subjects | Complementation Information processing Misalignment Modules Multiphase Pancreas Phases Representations Segmentation Thickness |
title | M3 Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M3%20Net:%20A%20multi-scale%20multi-view%20framework%20for%20multi-phase%20pancreas%20segmentation%20based%20on%20cross-phase%20non-local%20attention&rft.jtitle=Medical%20image%20analysis&rft.au=Qu,%20Taiping&rft.date=2022-01-01&rft.volume=75&rft.spage=1&rft.pages=1-&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2021.102232&rft_dat=%3Cproquest%3E2630527724%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630527724&rft_id=info:pmid/&rfr_iscdi=true |