A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects

Driven by the demand for various cationic biopolymers in recent years, the quaternization of cellulose nanofibers was carefully investigated to have tight control over their final characteristics. The addition of sodium hydroxide (NaOH) to the reaction mixture is crucial as it catalyzes the conversi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2022-02, Vol.29 (3), p.1435-1450
Hauptverfasser: Kopač, Tilen, Krajnc, Matjaž, Ručigaj, Aleš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1450
container_issue 3
container_start_page 1435
container_title Cellulose (London)
container_volume 29
creator Kopač, Tilen
Krajnc, Matjaž
Ručigaj, Aleš
description Driven by the demand for various cationic biopolymers in recent years, the quaternization of cellulose nanofibers was carefully investigated to have tight control over their final characteristics. The addition of sodium hydroxide (NaOH) to the reaction mixture is crucial as it catalyzes the conversion of alcohol groups of cellulose into more reactive alcoholate groups. On the other hand, excessive concentration proves to inhibit the reactivity of hydroxyl groups. The addition of glycidyltrimethylammonium chloride (GTMAC) increases the yield of the trimethylammonium chloride content (TMAC) reaction, while in excess it affects the rheological properties of the quaternizated cellulose nanofibers. The effects of NaOH and GTMAC on the TMAC content and rheological properties have been investigated in detail and mathematically evaluated. Furthermore, a comparison of the viscoelastic behavior and shear thinning character of commercial cationic micro- and nanofibrillated cellulose is presented. The research allows to extend the possibility of using cellulose in many applications of cationic biopolymers.
doi_str_mv 10.1007/s10570-021-04365-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2630420247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630420247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-774a4eb28406e65c97c5dcc23a3cba186cbf2e1a89bea4fb680f15af79d5e13e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgejSXmcmMuyLeoOBGwV3IZE7alHTSJjNIfQYf2rSjuHOVcM7__Qc-hC4puaaEiJtISSFIRhjNSM7LIvs4QhNaCJZVFXs_RhNSl3Va8_oUncW4IoTUgtEJ-prhsATv_MJq5XDsh3aHvcFa9dZ3VuO11cFnWHUt7lTnjW2CdU710GINzg3OR7jF2yFNQmc_DxgOoPTh4ze9Xf9O9x0jj_VShRSBYGOfjoAxoPt4jk6MchEuft4penu4f717yuYvj893s3mmecn7TIhc5dCwKicllIWuhS5arRlXXDeKVqVuDAOqqroBlZumrIihhTKibgugHPgUXY29m-C3A8RervwQunRSspKTnBGWi5RiYyoJiDGAkZtg1yrsJCVyb12O1mWyLg_W5UeC-AjFFO4WEP6q_6G-AUdrim0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630420247</pqid></control><display><type>article</type><title>A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects</title><source>Springer Nature - Complete Springer Journals</source><creator>Kopač, Tilen ; Krajnc, Matjaž ; Ručigaj, Aleš</creator><creatorcontrib>Kopač, Tilen ; Krajnc, Matjaž ; Ručigaj, Aleš</creatorcontrib><description>Driven by the demand for various cationic biopolymers in recent years, the quaternization of cellulose nanofibers was carefully investigated to have tight control over their final characteristics. The addition of sodium hydroxide (NaOH) to the reaction mixture is crucial as it catalyzes the conversion of alcohol groups of cellulose into more reactive alcoholate groups. On the other hand, excessive concentration proves to inhibit the reactivity of hydroxyl groups. The addition of glycidyltrimethylammonium chloride (GTMAC) increases the yield of the trimethylammonium chloride content (TMAC) reaction, while in excess it affects the rheological properties of the quaternizated cellulose nanofibers. The effects of NaOH and GTMAC on the TMAC content and rheological properties have been investigated in detail and mathematically evaluated. Furthermore, a comparison of the viscoelastic behavior and shear thinning character of commercial cationic micro- and nanofibrillated cellulose is presented. The research allows to extend the possibility of using cellulose in many applications of cationic biopolymers.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-04365-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Biopolymers ; Cations ; Cellulose ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chlorides ; Composites ; Glass ; Hydroxyl groups ; Nanofibers ; Natural Materials ; Optimization ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Rheological properties ; Rheology ; Shear thinning (liquids) ; Sodium hydroxide ; Sustainable Development</subject><ispartof>Cellulose (London), 2022-02, Vol.29 (3), p.1435-1450</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-774a4eb28406e65c97c5dcc23a3cba186cbf2e1a89bea4fb680f15af79d5e13e3</citedby><cites>FETCH-LOGICAL-c363t-774a4eb28406e65c97c5dcc23a3cba186cbf2e1a89bea4fb680f15af79d5e13e3</cites><orcidid>0000-0001-5792-5619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-021-04365-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-021-04365-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kopač, Tilen</creatorcontrib><creatorcontrib>Krajnc, Matjaž</creatorcontrib><creatorcontrib>Ručigaj, Aleš</creatorcontrib><title>A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Driven by the demand for various cationic biopolymers in recent years, the quaternization of cellulose nanofibers was carefully investigated to have tight control over their final characteristics. The addition of sodium hydroxide (NaOH) to the reaction mixture is crucial as it catalyzes the conversion of alcohol groups of cellulose into more reactive alcoholate groups. On the other hand, excessive concentration proves to inhibit the reactivity of hydroxyl groups. The addition of glycidyltrimethylammonium chloride (GTMAC) increases the yield of the trimethylammonium chloride content (TMAC) reaction, while in excess it affects the rheological properties of the quaternizated cellulose nanofibers. The effects of NaOH and GTMAC on the TMAC content and rheological properties have been investigated in detail and mathematically evaluated. Furthermore, a comparison of the viscoelastic behavior and shear thinning character of commercial cationic micro- and nanofibrillated cellulose is presented. The research allows to extend the possibility of using cellulose in many applications of cationic biopolymers.</description><subject>Bioorganic Chemistry</subject><subject>Biopolymers</subject><subject>Cations</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chlorides</subject><subject>Composites</subject><subject>Glass</subject><subject>Hydroxyl groups</subject><subject>Nanofibers</subject><subject>Natural Materials</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear thinning (liquids)</subject><subject>Sodium hydroxide</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgejSXmcmMuyLeoOBGwV3IZE7alHTSJjNIfQYf2rSjuHOVcM7__Qc-hC4puaaEiJtISSFIRhjNSM7LIvs4QhNaCJZVFXs_RhNSl3Va8_oUncW4IoTUgtEJ-prhsATv_MJq5XDsh3aHvcFa9dZ3VuO11cFnWHUt7lTnjW2CdU710GINzg3OR7jF2yFNQmc_DxgOoPTh4ze9Xf9O9x0jj_VShRSBYGOfjoAxoPt4jk6MchEuft4penu4f717yuYvj893s3mmecn7TIhc5dCwKicllIWuhS5arRlXXDeKVqVuDAOqqroBlZumrIihhTKibgugHPgUXY29m-C3A8RervwQunRSspKTnBGWi5RiYyoJiDGAkZtg1yrsJCVyb12O1mWyLg_W5UeC-AjFFO4WEP6q_6G-AUdrim0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kopač, Tilen</creator><creator>Krajnc, Matjaž</creator><creator>Ručigaj, Aleš</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5792-5619</orcidid></search><sort><creationdate>20220201</creationdate><title>A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects</title><author>Kopač, Tilen ; Krajnc, Matjaž ; Ručigaj, Aleš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-774a4eb28406e65c97c5dcc23a3cba186cbf2e1a89bea4fb680f15af79d5e13e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioorganic Chemistry</topic><topic>Biopolymers</topic><topic>Cations</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chlorides</topic><topic>Composites</topic><topic>Glass</topic><topic>Hydroxyl groups</topic><topic>Nanofibers</topic><topic>Natural Materials</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear thinning (liquids)</topic><topic>Sodium hydroxide</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopač, Tilen</creatorcontrib><creatorcontrib>Krajnc, Matjaž</creatorcontrib><creatorcontrib>Ručigaj, Aleš</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopač, Tilen</au><au>Krajnc, Matjaž</au><au>Ručigaj, Aleš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><spage>1435</spage><epage>1450</epage><pages>1435-1450</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Driven by the demand for various cationic biopolymers in recent years, the quaternization of cellulose nanofibers was carefully investigated to have tight control over their final characteristics. The addition of sodium hydroxide (NaOH) to the reaction mixture is crucial as it catalyzes the conversion of alcohol groups of cellulose into more reactive alcoholate groups. On the other hand, excessive concentration proves to inhibit the reactivity of hydroxyl groups. The addition of glycidyltrimethylammonium chloride (GTMAC) increases the yield of the trimethylammonium chloride content (TMAC) reaction, while in excess it affects the rheological properties of the quaternizated cellulose nanofibers. The effects of NaOH and GTMAC on the TMAC content and rheological properties have been investigated in detail and mathematically evaluated. Furthermore, a comparison of the viscoelastic behavior and shear thinning character of commercial cationic micro- and nanofibrillated cellulose is presented. The research allows to extend the possibility of using cellulose in many applications of cationic biopolymers.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-04365-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5792-5619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2022-02, Vol.29 (3), p.1435-1450
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2630420247
source Springer Nature - Complete Springer Journals
subjects Bioorganic Chemistry
Biopolymers
Cations
Cellulose
Cellulose fibers
Ceramics
Chemistry
Chemistry and Materials Science
Chlorides
Composites
Glass
Hydroxyl groups
Nanofibers
Natural Materials
Optimization
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Rheological properties
Rheology
Shear thinning (liquids)
Sodium hydroxide
Sustainable Development
title A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rheological%20study%20of%20cationic%20micro-%20and%20nanofibrillated%20cellulose:%20quaternization%20reaction%20optimization%20and%20fibril%20characteristic%20effects&rft.jtitle=Cellulose%20(London)&rft.au=Kopa%C4%8D,%20Tilen&rft.date=2022-02-01&rft.volume=29&rft.issue=3&rft.spage=1435&rft.epage=1450&rft.pages=1435-1450&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-04365-w&rft_dat=%3Cproquest_cross%3E2630420247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630420247&rft_id=info:pmid/&rfr_iscdi=true