Internal stabilization of an underactuated linear parabolic system via modal decomposition (extended version)

This work concerns the internal stabilization of underactuated linear systems of \(m\) heat equations in cascade, where the control is placed internally in the first equation only and the diffusion coefficients are distinct. Combining the modal decomposition method with a recently introduced state-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Kitsos, Constantinos, Fridman, Emilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kitsos, Constantinos
Fridman, Emilia
description This work concerns the internal stabilization of underactuated linear systems of \(m\) heat equations in cascade, where the control is placed internally in the first equation only and the diffusion coefficients are distinct. Combining the modal decomposition method with a recently introduced state-transformation approach for observation problems, a proportional-type stabilizing control is given explicitly. It is based on a transformation for the ODE system corresponding to the comparatively unstable modes into a target one, where calculation of the stabilization law is independent of the arbitrarily large number of them and it is achieved by solving generalized Sylvester equations recursively. This provides a finite-dimensional counterpart of a recently introduced infinite-dimensional one, which led to Lyapunov stabilization. The present approach answers to the problem of stabilization with actuators not appearing in all the states and when boundary control results do not apply.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2630413753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630413753</sourcerecordid><originalsourceid>FETCH-proquest_journals_26304137533</originalsourceid><addsrcrecordid>eNqNzsEKwjAQBNAgCIr2Hxa86KFQE9t6F0Xv3svabCGSJjWbivr1VvEDPA0Mw2NGYiqVWqfbjZQTkTBfsyyTRSnzXE1Fe3KRgkMLHPFirHlhNN6BbwAd9E5TwDr2GEmDNY4wQIcBL96aGvjJkVq4G4TW68HQVPu282y-xpIekQZBw50CD81qLsYNWqbklzOxOOzPu2PaBX_riWN19f3nDVeyUNlmrcpcqf9Wb48WSrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630413753</pqid></control><display><type>article</type><title>Internal stabilization of an underactuated linear parabolic system via modal decomposition (extended version)</title><source>Free E- Journals</source><creator>Kitsos, Constantinos ; Fridman, Emilia</creator><creatorcontrib>Kitsos, Constantinos ; Fridman, Emilia</creatorcontrib><description>This work concerns the internal stabilization of underactuated linear systems of \(m\) heat equations in cascade, where the control is placed internally in the first equation only and the diffusion coefficients are distinct. Combining the modal decomposition method with a recently introduced state-transformation approach for observation problems, a proportional-type stabilizing control is given explicitly. It is based on a transformation for the ODE system corresponding to the comparatively unstable modes into a target one, where calculation of the stabilization law is independent of the arbitrarily large number of them and it is achieved by solving generalized Sylvester equations recursively. This provides a finite-dimensional counterpart of a recently introduced infinite-dimensional one, which led to Lyapunov stabilization. The present approach answers to the problem of stabilization with actuators not appearing in all the states and when boundary control results do not apply.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Boundary control ; Decomposition ; Linear systems ; Stabilization ; Thermodynamics ; Transformations (mathematics)</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kitsos, Constantinos</creatorcontrib><creatorcontrib>Fridman, Emilia</creatorcontrib><title>Internal stabilization of an underactuated linear parabolic system via modal decomposition (extended version)</title><title>arXiv.org</title><description>This work concerns the internal stabilization of underactuated linear systems of \(m\) heat equations in cascade, where the control is placed internally in the first equation only and the diffusion coefficients are distinct. Combining the modal decomposition method with a recently introduced state-transformation approach for observation problems, a proportional-type stabilizing control is given explicitly. It is based on a transformation for the ODE system corresponding to the comparatively unstable modes into a target one, where calculation of the stabilization law is independent of the arbitrarily large number of them and it is achieved by solving generalized Sylvester equations recursively. This provides a finite-dimensional counterpart of a recently introduced infinite-dimensional one, which led to Lyapunov stabilization. The present approach answers to the problem of stabilization with actuators not appearing in all the states and when boundary control results do not apply.</description><subject>Actuators</subject><subject>Boundary control</subject><subject>Decomposition</subject><subject>Linear systems</subject><subject>Stabilization</subject><subject>Thermodynamics</subject><subject>Transformations (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzsEKwjAQBNAgCIr2Hxa86KFQE9t6F0Xv3svabCGSJjWbivr1VvEDPA0Mw2NGYiqVWqfbjZQTkTBfsyyTRSnzXE1Fe3KRgkMLHPFirHlhNN6BbwAd9E5TwDr2GEmDNY4wQIcBL96aGvjJkVq4G4TW68HQVPu282y-xpIekQZBw50CD81qLsYNWqbklzOxOOzPu2PaBX_riWN19f3nDVeyUNlmrcpcqf9Wb48WSrw</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Kitsos, Constantinos</creator><creator>Fridman, Emilia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220720</creationdate><title>Internal stabilization of an underactuated linear parabolic system via modal decomposition (extended version)</title><author>Kitsos, Constantinos ; Fridman, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26304137533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Boundary control</topic><topic>Decomposition</topic><topic>Linear systems</topic><topic>Stabilization</topic><topic>Thermodynamics</topic><topic>Transformations (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Kitsos, Constantinos</creatorcontrib><creatorcontrib>Fridman, Emilia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitsos, Constantinos</au><au>Fridman, Emilia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Internal stabilization of an underactuated linear parabolic system via modal decomposition (extended version)</atitle><jtitle>arXiv.org</jtitle><date>2022-07-20</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This work concerns the internal stabilization of underactuated linear systems of \(m\) heat equations in cascade, where the control is placed internally in the first equation only and the diffusion coefficients are distinct. Combining the modal decomposition method with a recently introduced state-transformation approach for observation problems, a proportional-type stabilizing control is given explicitly. It is based on a transformation for the ODE system corresponding to the comparatively unstable modes into a target one, where calculation of the stabilization law is independent of the arbitrarily large number of them and it is achieved by solving generalized Sylvester equations recursively. This provides a finite-dimensional counterpart of a recently introduced infinite-dimensional one, which led to Lyapunov stabilization. The present approach answers to the problem of stabilization with actuators not appearing in all the states and when boundary control results do not apply.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2630413753
source Free E- Journals
subjects Actuators
Boundary control
Decomposition
Linear systems
Stabilization
Thermodynamics
Transformations (mathematics)
title Internal stabilization of an underactuated linear parabolic system via modal decomposition (extended version)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Internal%20stabilization%20of%20an%20underactuated%20linear%20parabolic%20system%20via%20modal%20decomposition%20(extended%20version)&rft.jtitle=arXiv.org&rft.au=Kitsos,%20Constantinos&rft.date=2022-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2630413753%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630413753&rft_id=info:pmid/&rfr_iscdi=true