Learning event‐triggered control based on evolving data‐driven fuzzy granular models

This article proposes a data‐stream‐driven event‐triggered control strategy using evolving fuzzy models learned by granulation of input–output samples of nonlinear systems with unknown time‐varying dynamics. The evolving fuzzy model is obtained online from a data stream ensuring data coverage based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2022-03, Vol.32 (5), p.2805-2827
Hauptverfasser: Cordovil, Luiz A. Q., Coutinho, Pedro H. S., Bessa, Iury, Peixoto, Márcia L. C., Palhares, Reinaldo Martínez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2827
container_issue 5
container_start_page 2805
container_title International journal of robust and nonlinear control
container_volume 32
creator Cordovil, Luiz A. Q.
Coutinho, Pedro H. S.
Bessa, Iury
Peixoto, Márcia L. C.
Palhares, Reinaldo Martínez
description This article proposes a data‐stream‐driven event‐triggered control strategy using evolving fuzzy models learned by granulation of input–output samples of nonlinear systems with unknown time‐varying dynamics. The evolving fuzzy model is obtained online from a data stream ensuring data coverage based on the principle of justifiable granularity and controlled by an event‐triggering learning mechanism dependent on the model accuracy. This evolving fuzzy model is used to design event‐triggered fuzzy controller to stabilize networked control systems while reducing the used communication resources. The event‐triggered learning mechanism is employed to determine the instants in which the event‐triggered fuzzy controller should be redesigned. Numerical examples illustrate the effectiveness of the proposed learning event‐triggered fuzzy control algorithm.
doi_str_mv 10.1002/rnc.6024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629666160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629666160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-3d459be53075fbb1dda602f3c81e6b14c38bbb6768579c099157ebe869217b5c3</originalsourceid><addsrcrecordid>eNp10NtKwzAYB_AgCs4p-AgFb7zpzKFNm0sZnmAoiIJ3IUm_lo4umUk72a58BJ_RJzF13nqVhPy-A3-EzgmeEYzplbdmxjHNDtCEYCFSQpk4HO-ZSEtB2TE6CWGJcfyj2QS9LUB529omgQ3Y_vvzq_dt04CHKjHO9t51iVYhvpyNxHWb0VaqV5FWvo1FST3sdtuk8coOnfLJylXQhVN0VKsuwNnfOUWvtzcv8_t08XT3ML9epIYKlqWsynKhIWe4yGutSVWpuH3NTEmAa5IZVmqtecHLvBAmLk3yAjSUXFBS6NywKbrY91179z5A6OXSDd7GkZJyKjjnhOOoLvfKeBeCh1qufbtSfisJlmNuMuYmx9wiTff0o-1g-6-Tz4_zX_8DvLdxHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629666160</pqid></control><display><type>article</type><title>Learning event‐triggered control based on evolving data‐driven fuzzy granular models</title><source>Wiley Online Library All Journals</source><creator>Cordovil, Luiz A. Q. ; Coutinho, Pedro H. S. ; Bessa, Iury ; Peixoto, Márcia L. C. ; Palhares, Reinaldo Martínez</creator><creatorcontrib>Cordovil, Luiz A. Q. ; Coutinho, Pedro H. S. ; Bessa, Iury ; Peixoto, Márcia L. C. ; Palhares, Reinaldo Martínez</creatorcontrib><description>This article proposes a data‐stream‐driven event‐triggered control strategy using evolving fuzzy models learned by granulation of input–output samples of nonlinear systems with unknown time‐varying dynamics. The evolving fuzzy model is obtained online from a data stream ensuring data coverage based on the principle of justifiable granularity and controlled by an event‐triggering learning mechanism dependent on the model accuracy. This evolving fuzzy model is used to design event‐triggered fuzzy controller to stabilize networked control systems while reducing the used communication resources. The event‐triggered learning mechanism is employed to determine the instants in which the event‐triggered fuzzy controller should be redesigned. Numerical examples illustrate the effectiveness of the proposed learning event‐triggered fuzzy control algorithm.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6024</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Control algorithms ; Control systems design ; Control theory ; Controllers ; Data transmission ; data‐driven modeling ; Event triggered control ; Evolution ; evolving fuzzy systems ; Fuzzy control ; fuzzy granular computing ; Granulation ; learning event‐triggered control ; Machine learning ; Model accuracy ; Network control ; Nonlinear systems</subject><ispartof>International journal of robust and nonlinear control, 2022-03, Vol.32 (5), p.2805-2827</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-3d459be53075fbb1dda602f3c81e6b14c38bbb6768579c099157ebe869217b5c3</citedby><cites>FETCH-LOGICAL-c2934-3d459be53075fbb1dda602f3c81e6b14c38bbb6768579c099157ebe869217b5c3</cites><orcidid>0000-0001-7369-6297 ; 0000-0001-9503-856X ; 0000-0003-2470-4240 ; 0000-0002-6603-3476 ; 0000-0002-6043-7103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cordovil, Luiz A. Q.</creatorcontrib><creatorcontrib>Coutinho, Pedro H. S.</creatorcontrib><creatorcontrib>Bessa, Iury</creatorcontrib><creatorcontrib>Peixoto, Márcia L. C.</creatorcontrib><creatorcontrib>Palhares, Reinaldo Martínez</creatorcontrib><title>Learning event‐triggered control based on evolving data‐driven fuzzy granular models</title><title>International journal of robust and nonlinear control</title><description>This article proposes a data‐stream‐driven event‐triggered control strategy using evolving fuzzy models learned by granulation of input–output samples of nonlinear systems with unknown time‐varying dynamics. The evolving fuzzy model is obtained online from a data stream ensuring data coverage based on the principle of justifiable granularity and controlled by an event‐triggering learning mechanism dependent on the model accuracy. This evolving fuzzy model is used to design event‐triggered fuzzy controller to stabilize networked control systems while reducing the used communication resources. The event‐triggered learning mechanism is employed to determine the instants in which the event‐triggered fuzzy controller should be redesigned. Numerical examples illustrate the effectiveness of the proposed learning event‐triggered fuzzy control algorithm.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Data transmission</subject><subject>data‐driven modeling</subject><subject>Event triggered control</subject><subject>Evolution</subject><subject>evolving fuzzy systems</subject><subject>Fuzzy control</subject><subject>fuzzy granular computing</subject><subject>Granulation</subject><subject>learning event‐triggered control</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Network control</subject><subject>Nonlinear systems</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10NtKwzAYB_AgCs4p-AgFb7zpzKFNm0sZnmAoiIJ3IUm_lo4umUk72a58BJ_RJzF13nqVhPy-A3-EzgmeEYzplbdmxjHNDtCEYCFSQpk4HO-ZSEtB2TE6CWGJcfyj2QS9LUB529omgQ3Y_vvzq_dt04CHKjHO9t51iVYhvpyNxHWb0VaqV5FWvo1FST3sdtuk8coOnfLJylXQhVN0VKsuwNnfOUWvtzcv8_t08XT3ML9epIYKlqWsynKhIWe4yGutSVWpuH3NTEmAa5IZVmqtecHLvBAmLk3yAjSUXFBS6NywKbrY91179z5A6OXSDd7GkZJyKjjnhOOoLvfKeBeCh1qufbtSfisJlmNuMuYmx9wiTff0o-1g-6-Tz4_zX_8DvLdxHA</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Cordovil, Luiz A. Q.</creator><creator>Coutinho, Pedro H. S.</creator><creator>Bessa, Iury</creator><creator>Peixoto, Márcia L. C.</creator><creator>Palhares, Reinaldo Martínez</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7369-6297</orcidid><orcidid>https://orcid.org/0000-0001-9503-856X</orcidid><orcidid>https://orcid.org/0000-0003-2470-4240</orcidid><orcidid>https://orcid.org/0000-0002-6603-3476</orcidid><orcidid>https://orcid.org/0000-0002-6043-7103</orcidid></search><sort><creationdate>20220325</creationdate><title>Learning event‐triggered control based on evolving data‐driven fuzzy granular models</title><author>Cordovil, Luiz A. Q. ; Coutinho, Pedro H. S. ; Bessa, Iury ; Peixoto, Márcia L. C. ; Palhares, Reinaldo Martínez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-3d459be53075fbb1dda602f3c81e6b14c38bbb6768579c099157ebe869217b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Data transmission</topic><topic>data‐driven modeling</topic><topic>Event triggered control</topic><topic>Evolution</topic><topic>evolving fuzzy systems</topic><topic>Fuzzy control</topic><topic>fuzzy granular computing</topic><topic>Granulation</topic><topic>learning event‐triggered control</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Network control</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordovil, Luiz A. Q.</creatorcontrib><creatorcontrib>Coutinho, Pedro H. S.</creatorcontrib><creatorcontrib>Bessa, Iury</creatorcontrib><creatorcontrib>Peixoto, Márcia L. C.</creatorcontrib><creatorcontrib>Palhares, Reinaldo Martínez</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordovil, Luiz A. Q.</au><au>Coutinho, Pedro H. S.</au><au>Bessa, Iury</au><au>Peixoto, Márcia L. C.</au><au>Palhares, Reinaldo Martínez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning event‐triggered control based on evolving data‐driven fuzzy granular models</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-03-25</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>2805</spage><epage>2827</epage><pages>2805-2827</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article proposes a data‐stream‐driven event‐triggered control strategy using evolving fuzzy models learned by granulation of input–output samples of nonlinear systems with unknown time‐varying dynamics. The evolving fuzzy model is obtained online from a data stream ensuring data coverage based on the principle of justifiable granularity and controlled by an event‐triggering learning mechanism dependent on the model accuracy. This evolving fuzzy model is used to design event‐triggered fuzzy controller to stabilize networked control systems while reducing the used communication resources. The event‐triggered learning mechanism is employed to determine the instants in which the event‐triggered fuzzy controller should be redesigned. Numerical examples illustrate the effectiveness of the proposed learning event‐triggered fuzzy control algorithm.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6024</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7369-6297</orcidid><orcidid>https://orcid.org/0000-0001-9503-856X</orcidid><orcidid>https://orcid.org/0000-0003-2470-4240</orcidid><orcidid>https://orcid.org/0000-0002-6603-3476</orcidid><orcidid>https://orcid.org/0000-0002-6043-7103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2022-03, Vol.32 (5), p.2805-2827
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2629666160
source Wiley Online Library All Journals
subjects Algorithms
Control algorithms
Control systems design
Control theory
Controllers
Data transmission
data‐driven modeling
Event triggered control
Evolution
evolving fuzzy systems
Fuzzy control
fuzzy granular computing
Granulation
learning event‐triggered control
Machine learning
Model accuracy
Network control
Nonlinear systems
title Learning event‐triggered control based on evolving data‐driven fuzzy granular models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20event%E2%80%90triggered%20control%20based%20on%20evolving%20data%E2%80%90driven%20fuzzy%20granular%20models&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Cordovil,%20Luiz%20A.%20Q.&rft.date=2022-03-25&rft.volume=32&rft.issue=5&rft.spage=2805&rft.epage=2827&rft.pages=2805-2827&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6024&rft_dat=%3Cproquest_cross%3E2629666160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629666160&rft_id=info:pmid/&rfr_iscdi=true