Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints
In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique....
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2022-03, Vol.32 (5), p.2950-2968 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2968 |
---|---|
container_issue | 5 |
container_start_page | 2950 |
container_title | International journal of robust and nonlinear control |
container_volume | 32 |
creator | Wang, Ning Gao, Ying Liu, Yongjin Li, Kun |
description | In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority. |
doi_str_mv | 10.1002/rnc.5978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629665997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629665997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</originalsourceid><addsrcrecordid>eNp1kElOAzEQRVsIJEJA4giW2LDp4KEHe4kiJikCiWFtuZ0y6eDYwe4myo4jcEZOgpuwZVVf9V9VqX6WnRI8IRjTi-D0pBQ138tGBAuRE8rE_qALkXNB2WF2FOMS4-TRYpSFJ7Dm-_PLggquda9JNirCHPl1166URV1Q-i0ZSHvXBW-RN0g51LuVci5xsQ9GaUAfsGi1BbRpuwVa-wiJmqeu9brttsN0TKta18Xj7MAoG-Hkr46zl-ur5-ltPnu4uZteznJNBeO5qElNCiXAmLKotYJGE1JCo0wFyWMVqfi8YYwBrpTgHJecal5o3lAGjdFsnJ3t9q6Df-8hdnLp--DSSUkrKqqqFKJO1PmO0sHHGMDIdUiPh60kWA6JypSoHBJNaL5DN62F7b-cfLyf_vI_PRZ7gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629665997</pqid></control><display><type>article</type><title>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Ning ; Gao, Ying ; Liu, Yongjin ; Li, Kun</creator><creatorcontrib>Wang, Ning ; Gao, Ying ; Liu, Yongjin ; Li, Kun</creatorcontrib><description>In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.5978</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Constraints ; Learning ; Liapunov functions ; Neural networks ; pose and velocity constraints ; reinforcement learning control ; self‐learning‐based optimal control ; Surface vehicles ; Tracking control ; Tracking errors ; trajectory tracking ; unmanned surface vehicle ; Unmanned vehicles</subject><ispartof>International journal of robust and nonlinear control, 2022-03, Vol.32 (5), p.2950-2968</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</citedby><cites>FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</cites><orcidid>0000-0002-7166-9700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.5978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.5978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Liu, Yongjin</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><title>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</title><title>International journal of robust and nonlinear control</title><description>In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.</description><subject>Adaptive control</subject><subject>Constraints</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Neural networks</subject><subject>pose and velocity constraints</subject><subject>reinforcement learning control</subject><subject>self‐learning‐based optimal control</subject><subject>Surface vehicles</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>trajectory tracking</subject><subject>unmanned surface vehicle</subject><subject>Unmanned vehicles</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kElOAzEQRVsIJEJA4giW2LDp4KEHe4kiJikCiWFtuZ0y6eDYwe4myo4jcEZOgpuwZVVf9V9VqX6WnRI8IRjTi-D0pBQ138tGBAuRE8rE_qALkXNB2WF2FOMS4-TRYpSFJ7Dm-_PLggquda9JNirCHPl1166URV1Q-i0ZSHvXBW-RN0g51LuVci5xsQ9GaUAfsGi1BbRpuwVa-wiJmqeu9brttsN0TKta18Xj7MAoG-Hkr46zl-ur5-ltPnu4uZteznJNBeO5qElNCiXAmLKotYJGE1JCo0wFyWMVqfi8YYwBrpTgHJecal5o3lAGjdFsnJ3t9q6Df-8hdnLp--DSSUkrKqqqFKJO1PmO0sHHGMDIdUiPh60kWA6JypSoHBJNaL5DN62F7b-cfLyf_vI_PRZ7gQ</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Wang, Ning</creator><creator>Gao, Ying</creator><creator>Liu, Yongjin</creator><creator>Li, Kun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7166-9700</orcidid></search><sort><creationdate>20220325</creationdate><title>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</title><author>Wang, Ning ; Gao, Ying ; Liu, Yongjin ; Li, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Constraints</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Neural networks</topic><topic>pose and velocity constraints</topic><topic>reinforcement learning control</topic><topic>self‐learning‐based optimal control</topic><topic>Surface vehicles</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>trajectory tracking</topic><topic>unmanned surface vehicle</topic><topic>Unmanned vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Liu, Yongjin</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Gao, Ying</au><au>Liu, Yongjin</au><au>Li, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-03-25</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>2950</spage><epage>2968</epage><pages>2950-2968</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.5978</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7166-9700</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2022-03, Vol.32 (5), p.2950-2968 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2629665997 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive control Constraints Learning Liapunov functions Neural networks pose and velocity constraints reinforcement learning control self‐learning‐based optimal control Surface vehicles Tracking control Tracking errors trajectory tracking unmanned surface vehicle Unmanned vehicles |
title | Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90learning%E2%80%90based%20optimal%20tracking%20control%20of%20an%20unmanned%20surface%20vehicle%20with%20pose%20and%20velocity%20constraints&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wang,%20Ning&rft.date=2022-03-25&rft.volume=32&rft.issue=5&rft.spage=2950&rft.epage=2968&rft.pages=2950-2968&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.5978&rft_dat=%3Cproquest_cross%3E2629665997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629665997&rft_id=info:pmid/&rfr_iscdi=true |