Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints

In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2022-03, Vol.32 (5), p.2950-2968
Hauptverfasser: Wang, Ning, Gao, Ying, Liu, Yongjin, Li, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2968
container_issue 5
container_start_page 2950
container_title International journal of robust and nonlinear control
container_volume 32
creator Wang, Ning
Gao, Ying
Liu, Yongjin
Li, Kun
description In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.
doi_str_mv 10.1002/rnc.5978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629665997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629665997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</originalsourceid><addsrcrecordid>eNp1kElOAzEQRVsIJEJA4giW2LDp4KEHe4kiJikCiWFtuZ0y6eDYwe4myo4jcEZOgpuwZVVf9V9VqX6WnRI8IRjTi-D0pBQ138tGBAuRE8rE_qALkXNB2WF2FOMS4-TRYpSFJ7Dm-_PLggquda9JNirCHPl1166URV1Q-i0ZSHvXBW-RN0g51LuVci5xsQ9GaUAfsGi1BbRpuwVa-wiJmqeu9brttsN0TKta18Xj7MAoG-Hkr46zl-ur5-ltPnu4uZteznJNBeO5qElNCiXAmLKotYJGE1JCo0wFyWMVqfi8YYwBrpTgHJecal5o3lAGjdFsnJ3t9q6Df-8hdnLp--DSSUkrKqqqFKJO1PmO0sHHGMDIdUiPh60kWA6JypSoHBJNaL5DN62F7b-cfLyf_vI_PRZ7gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629665997</pqid></control><display><type>article</type><title>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Ning ; Gao, Ying ; Liu, Yongjin ; Li, Kun</creator><creatorcontrib>Wang, Ning ; Gao, Ying ; Liu, Yongjin ; Li, Kun</creatorcontrib><description>In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.5978</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Constraints ; Learning ; Liapunov functions ; Neural networks ; pose and velocity constraints ; reinforcement learning control ; self‐learning‐based optimal control ; Surface vehicles ; Tracking control ; Tracking errors ; trajectory tracking ; unmanned surface vehicle ; Unmanned vehicles</subject><ispartof>International journal of robust and nonlinear control, 2022-03, Vol.32 (5), p.2950-2968</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</citedby><cites>FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</cites><orcidid>0000-0002-7166-9700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.5978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.5978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Liu, Yongjin</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><title>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</title><title>International journal of robust and nonlinear control</title><description>In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.</description><subject>Adaptive control</subject><subject>Constraints</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Neural networks</subject><subject>pose and velocity constraints</subject><subject>reinforcement learning control</subject><subject>self‐learning‐based optimal control</subject><subject>Surface vehicles</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>trajectory tracking</subject><subject>unmanned surface vehicle</subject><subject>Unmanned vehicles</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kElOAzEQRVsIJEJA4giW2LDp4KEHe4kiJikCiWFtuZ0y6eDYwe4myo4jcEZOgpuwZVVf9V9VqX6WnRI8IRjTi-D0pBQ138tGBAuRE8rE_qALkXNB2WF2FOMS4-TRYpSFJ7Dm-_PLggquda9JNirCHPl1166URV1Q-i0ZSHvXBW-RN0g51LuVci5xsQ9GaUAfsGi1BbRpuwVa-wiJmqeu9brttsN0TKta18Xj7MAoG-Hkr46zl-ur5-ltPnu4uZteznJNBeO5qElNCiXAmLKotYJGE1JCo0wFyWMVqfi8YYwBrpTgHJecal5o3lAGjdFsnJ3t9q6Df-8hdnLp--DSSUkrKqqqFKJO1PmO0sHHGMDIdUiPh60kWA6JypSoHBJNaL5DN62F7b-cfLyf_vI_PRZ7gQ</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Wang, Ning</creator><creator>Gao, Ying</creator><creator>Liu, Yongjin</creator><creator>Li, Kun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7166-9700</orcidid></search><sort><creationdate>20220325</creationdate><title>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</title><author>Wang, Ning ; Gao, Ying ; Liu, Yongjin ; Li, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-971714a9eff547caebc115ebaf6e97136168db333e06a9880582c84c8b23ebfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Constraints</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Neural networks</topic><topic>pose and velocity constraints</topic><topic>reinforcement learning control</topic><topic>self‐learning‐based optimal control</topic><topic>Surface vehicles</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>trajectory tracking</topic><topic>unmanned surface vehicle</topic><topic>Unmanned vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Liu, Yongjin</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Gao, Ying</au><au>Liu, Yongjin</au><au>Li, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-03-25</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>2950</spage><epage>2968</epage><pages>2950-2968</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, subject to both pose and velocity constraints within narrow waters, a self‐learning‐based optimal tracking control (SLOTC) scheme is innovatively created for an unmanned surface vehicle (USV) by deploying actor‐critic reinforcement learning (RL) mechanism and backstepping technique. To be specific, the barrier Lyapunov function (BLF) is devised to uniformly limit the states within a predefined region pertaining to a smoothly feasible reference trajectory. By virtue of a constrained Hamilton–Jacobi–Bellman (HJB) function, an actor‐critic control structure under backstepping is established by employing adaptive neural network identifiers which recursively updates actor and critic, simultaneously. Eventually, theoretical analysis proves that the entire SLOTC scheme can render all the states remain in the predefined compact set while tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results on a prototype USV demonstrate remarkable effectiveness and superiority.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.5978</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7166-9700</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2022-03, Vol.32 (5), p.2950-2968
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2629665997
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive control
Constraints
Learning
Liapunov functions
Neural networks
pose and velocity constraints
reinforcement learning control
self‐learning‐based optimal control
Surface vehicles
Tracking control
Tracking errors
trajectory tracking
unmanned surface vehicle
Unmanned vehicles
title Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90learning%E2%80%90based%20optimal%20tracking%20control%20of%20an%20unmanned%20surface%20vehicle%20with%20pose%20and%20velocity%20constraints&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wang,%20Ning&rft.date=2022-03-25&rft.volume=32&rft.issue=5&rft.spage=2950&rft.epage=2968&rft.pages=2950-2968&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.5978&rft_dat=%3Cproquest_cross%3E2629665997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629665997&rft_id=info:pmid/&rfr_iscdi=true