Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture

It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2022, Vol.25 (1), p.309-333
Hauptverfasser: Wei, Xianglin, Li, Li, Cai, Lingfeng, Tang, Chaogang, Subramaniam, Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 1
container_start_page 309
container_title World wide web (Bussum)
container_volume 25
creator Wei, Xianglin
Li, Li
Cai, Lingfeng
Tang, Chaogang
Subramaniam, Suresh
description It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.
doi_str_mv 10.1007/s11280-021-00929-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629525713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629525713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</originalsourceid><addsrcrecordid>eNp9kE9LHEEQxQcxEGP8Ajk1eO7Y_2f6KEtMIgu5xJBb01tTs7auPWtXj-C3t3UDuXmqR9V7r-DXdV-k-CqF6C9ISjUILpTkQnjluT_qTqTtNZdG6uOm9eCatn8_dp-I7oQQTnt50tH1nHJlhOUpAfJpyVDTnNmI-938_IDtFvPIaqR7RnCL47JLectSZjeXf67mLY9EiSqObIw18rGkJ2zpRLEtCytI-zkTsljgNlWEuhT83H2Y4o7w7N887W6uvv1e_eDrX99_ri7XHLT0lUewvZjkxgzGKAfgoAdhHMImGoVWeQNgrBhAKyuiE2AH7RoG76bNZOKkT7vzQ---zI8LUg1381JyexmUU94q20vdXOrggjITFZzCvqSHWJ6DFOEVbjjADQ1ueIMbfAvpQ4iaOW-x_K9-J_UCcCB-sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629525713</pqid></control><display><type>article</type><title>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</title><source>SpringerLink Journals</source><creator>Wei, Xianglin ; Li, Li ; Cai, Lingfeng ; Tang, Chaogang ; Subramaniam, Suresh</creator><creatorcontrib>Wei, Xianglin ; Li, Li ; Cai, Lingfeng ; Tang, Chaogang ; Subramaniam, Suresh</creatorcontrib><description>It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-021-00929-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cloud computing ; Computer Science ; Congestion ; Database Management ; Disaster management ; Greedy algorithms ; Information services ; Information Systems Applications (incl.Internet) ; Nodes ; Operating Systems ; Optimization ; Scheduling ; Special Issue on Web Information Systems Engineering 2020 ; Task scheduling ; Topology ; Unmanned aerial vehicles</subject><ispartof>World wide web (Bussum), 2022, Vol.25 (1), p.309-333</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</citedby><cites>FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-021-00929-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-021-00929-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wei, Xianglin</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cai, Lingfeng</creatorcontrib><creatorcontrib>Tang, Chaogang</creatorcontrib><creatorcontrib>Subramaniam, Suresh</creatorcontrib><title>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer Science</subject><subject>Congestion</subject><subject>Database Management</subject><subject>Disaster management</subject><subject>Greedy algorithms</subject><subject>Information services</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Nodes</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Scheduling</subject><subject>Special Issue on Web Information Systems Engineering 2020</subject><subject>Task scheduling</subject><subject>Topology</subject><subject>Unmanned aerial vehicles</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LHEEQxQcxEGP8Ajk1eO7Y_2f6KEtMIgu5xJBb01tTs7auPWtXj-C3t3UDuXmqR9V7r-DXdV-k-CqF6C9ISjUILpTkQnjluT_qTqTtNZdG6uOm9eCatn8_dp-I7oQQTnt50tH1nHJlhOUpAfJpyVDTnNmI-938_IDtFvPIaqR7RnCL47JLectSZjeXf67mLY9EiSqObIw18rGkJ2zpRLEtCytI-zkTsljgNlWEuhT83H2Y4o7w7N887W6uvv1e_eDrX99_ri7XHLT0lUewvZjkxgzGKAfgoAdhHMImGoVWeQNgrBhAKyuiE2AH7RoG76bNZOKkT7vzQ---zI8LUg1381JyexmUU94q20vdXOrggjITFZzCvqSHWJ6DFOEVbjjADQ1ueIMbfAvpQ4iaOW-x_K9-J_UCcCB-sg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wei, Xianglin</creator><creator>Li, Li</creator><creator>Cai, Lingfeng</creator><creator>Tang, Chaogang</creator><creator>Subramaniam, Suresh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</title><author>Wei, Xianglin ; Li, Li ; Cai, Lingfeng ; Tang, Chaogang ; Subramaniam, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer Science</topic><topic>Congestion</topic><topic>Database Management</topic><topic>Disaster management</topic><topic>Greedy algorithms</topic><topic>Information services</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Nodes</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Scheduling</topic><topic>Special Issue on Web Information Systems Engineering 2020</topic><topic>Task scheduling</topic><topic>Topology</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xianglin</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cai, Lingfeng</creatorcontrib><creatorcontrib>Tang, Chaogang</creatorcontrib><creatorcontrib>Subramaniam, Suresh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xianglin</au><au>Li, Li</au><au>Cai, Lingfeng</au><au>Tang, Chaogang</au><au>Subramaniam, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2022</date><risdate>2022</risdate><volume>25</volume><issue>1</issue><spage>309</spage><epage>333</epage><pages>309-333</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-021-00929-9</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2022, Vol.25 (1), p.309-333
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_journals_2629525713
source SpringerLink Journals
subjects Algorithms
Cloud computing
Computer Science
Congestion
Database Management
Disaster management
Greedy algorithms
Information services
Information Systems Applications (incl.Internet)
Nodes
Operating Systems
Optimization
Scheduling
Special Issue on Web Information Systems Engineering 2020
Task scheduling
Topology
Unmanned aerial vehicles
title Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20service-function%20deployment%20and%20task%20scheduling%20in%20UAVFog-assisted%20data-driven%20disaster%20response%20architecture&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Wei,%20Xianglin&rft.date=2022&rft.volume=25&rft.issue=1&rft.spage=309&rft.epage=333&rft.pages=309-333&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-021-00929-9&rft_dat=%3Cproquest_cross%3E2629525713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629525713&rft_id=info:pmid/&rfr_iscdi=true