Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture
It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in r...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2022, Vol.25 (1), p.309-333 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 1 |
container_start_page | 309 |
container_title | World wide web (Bussum) |
container_volume | 25 |
creator | Wei, Xianglin Li, Li Cai, Lingfeng Tang, Chaogang Subramaniam, Suresh |
description | It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings. |
doi_str_mv | 10.1007/s11280-021-00929-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629525713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629525713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</originalsourceid><addsrcrecordid>eNp9kE9LHEEQxQcxEGP8Ajk1eO7Y_2f6KEtMIgu5xJBb01tTs7auPWtXj-C3t3UDuXmqR9V7r-DXdV-k-CqF6C9ISjUILpTkQnjluT_qTqTtNZdG6uOm9eCatn8_dp-I7oQQTnt50tH1nHJlhOUpAfJpyVDTnNmI-938_IDtFvPIaqR7RnCL47JLectSZjeXf67mLY9EiSqObIw18rGkJ2zpRLEtCytI-zkTsljgNlWEuhT83H2Y4o7w7N887W6uvv1e_eDrX99_ri7XHLT0lUewvZjkxgzGKAfgoAdhHMImGoVWeQNgrBhAKyuiE2AH7RoG76bNZOKkT7vzQ---zI8LUg1381JyexmUU94q20vdXOrggjITFZzCvqSHWJ6DFOEVbjjADQ1ueIMbfAvpQ4iaOW-x_K9-J_UCcCB-sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629525713</pqid></control><display><type>article</type><title>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</title><source>SpringerLink Journals</source><creator>Wei, Xianglin ; Li, Li ; Cai, Lingfeng ; Tang, Chaogang ; Subramaniam, Suresh</creator><creatorcontrib>Wei, Xianglin ; Li, Li ; Cai, Lingfeng ; Tang, Chaogang ; Subramaniam, Suresh</creatorcontrib><description>It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-021-00929-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cloud computing ; Computer Science ; Congestion ; Database Management ; Disaster management ; Greedy algorithms ; Information services ; Information Systems Applications (incl.Internet) ; Nodes ; Operating Systems ; Optimization ; Scheduling ; Special Issue on Web Information Systems Engineering 2020 ; Task scheduling ; Topology ; Unmanned aerial vehicles</subject><ispartof>World wide web (Bussum), 2022, Vol.25 (1), p.309-333</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</citedby><cites>FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-021-00929-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-021-00929-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wei, Xianglin</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cai, Lingfeng</creatorcontrib><creatorcontrib>Tang, Chaogang</creatorcontrib><creatorcontrib>Subramaniam, Suresh</creatorcontrib><title>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer Science</subject><subject>Congestion</subject><subject>Database Management</subject><subject>Disaster management</subject><subject>Greedy algorithms</subject><subject>Information services</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Nodes</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Scheduling</subject><subject>Special Issue on Web Information Systems Engineering 2020</subject><subject>Task scheduling</subject><subject>Topology</subject><subject>Unmanned aerial vehicles</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LHEEQxQcxEGP8Ajk1eO7Y_2f6KEtMIgu5xJBb01tTs7auPWtXj-C3t3UDuXmqR9V7r-DXdV-k-CqF6C9ISjUILpTkQnjluT_qTqTtNZdG6uOm9eCatn8_dp-I7oQQTnt50tH1nHJlhOUpAfJpyVDTnNmI-938_IDtFvPIaqR7RnCL47JLectSZjeXf67mLY9EiSqObIw18rGkJ2zpRLEtCytI-zkTsljgNlWEuhT83H2Y4o7w7N887W6uvv1e_eDrX99_ri7XHLT0lUewvZjkxgzGKAfgoAdhHMImGoVWeQNgrBhAKyuiE2AH7RoG76bNZOKkT7vzQ---zI8LUg1381JyexmUU94q20vdXOrggjITFZzCvqSHWJ6DFOEVbjjADQ1ueIMbfAvpQ4iaOW-x_K9-J_UCcCB-sg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wei, Xianglin</creator><creator>Li, Li</creator><creator>Cai, Lingfeng</creator><creator>Tang, Chaogang</creator><creator>Subramaniam, Suresh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</title><author>Wei, Xianglin ; Li, Li ; Cai, Lingfeng ; Tang, Chaogang ; Subramaniam, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ac570f1b484426cc6c7c046ecba42e5294cc4508c3250a60c583612896fbf4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer Science</topic><topic>Congestion</topic><topic>Database Management</topic><topic>Disaster management</topic><topic>Greedy algorithms</topic><topic>Information services</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Nodes</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Scheduling</topic><topic>Special Issue on Web Information Systems Engineering 2020</topic><topic>Task scheduling</topic><topic>Topology</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xianglin</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cai, Lingfeng</creatorcontrib><creatorcontrib>Tang, Chaogang</creatorcontrib><creatorcontrib>Subramaniam, Suresh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xianglin</au><au>Li, Li</au><au>Cai, Lingfeng</au><au>Tang, Chaogang</au><au>Subramaniam, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2022</date><risdate>2022</risdate><volume>25</volume><issue>1</issue><spage>309</spage><epage>333</epage><pages>309-333</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-021-00929-9</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2022, Vol.25 (1), p.309-333 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_proquest_journals_2629525713 |
source | SpringerLink Journals |
subjects | Algorithms Cloud computing Computer Science Congestion Database Management Disaster management Greedy algorithms Information services Information Systems Applications (incl.Internet) Nodes Operating Systems Optimization Scheduling Special Issue on Web Information Systems Engineering 2020 Task scheduling Topology Unmanned aerial vehicles |
title | Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20service-function%20deployment%20and%20task%20scheduling%20in%20UAVFog-assisted%20data-driven%20disaster%20response%20architecture&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Wei,%20Xianglin&rft.date=2022&rft.volume=25&rft.issue=1&rft.spage=309&rft.epage=333&rft.pages=309-333&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-021-00929-9&rft_dat=%3Cproquest_cross%3E2629525713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629525713&rft_id=info:pmid/&rfr_iscdi=true |