Misinformation Detection in Social Media Video Posts
With the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Kehan Chan, David Zhao, Seth Z Canny, John Zakhor, Avideh |
description | With the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such as video and text. Due to the lack of large-scale public data for misinformation detection in multi-modal datasets, we collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data. In this work, we propose two new methods for detecting semantic inconsistencies within short-form social media video posts, based on contrastive learning and masked language modeling. We demonstrate that our new approaches outperform current state-of-the-art methods on both artificial data generated by random-swapping of positive samples and in the wild on a new manually-labeled test set for semantic misinformation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2629521707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629521707</sourcerecordid><originalsourceid>FETCH-proquest_journals_26295217073</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c0szsxLyy_KTSzJzM9TcEktSU0GszLzFILzkzMTcxR8U1MyExXCMlNS8xUC8otLinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMjS1MjQ3MDcmDhVAEX3NFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629521707</pqid></control><display><type>article</type><title>Misinformation Detection in Social Media Video Posts</title><source>Free E- Journals</source><creator>Wang, Kehan ; Chan, David ; Zhao, Seth Z ; Canny, John ; Zakhor, Avideh</creator><creatorcontrib>Wang, Kehan ; Chan, David ; Zhao, Seth Z ; Canny, John ; Zakhor, Avideh</creatorcontrib><description>With the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such as video and text. Due to the lack of large-scale public data for misinformation detection in multi-modal datasets, we collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data. In this work, we propose two new methods for detecting semantic inconsistencies within short-form social media video posts, based on contrastive learning and masked language modeling. We demonstrate that our new approaches outperform current state-of-the-art methods on both artificial data generated by random-swapping of positive samples and in the wild on a new manually-labeled test set for semantic misinformation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Digital media ; False information ; Semantics ; Social networks ; Supervised learning</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Kehan</creatorcontrib><creatorcontrib>Chan, David</creatorcontrib><creatorcontrib>Zhao, Seth Z</creatorcontrib><creatorcontrib>Canny, John</creatorcontrib><creatorcontrib>Zakhor, Avideh</creatorcontrib><title>Misinformation Detection in Social Media Video Posts</title><title>arXiv.org</title><description>With the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such as video and text. Due to the lack of large-scale public data for misinformation detection in multi-modal datasets, we collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data. In this work, we propose two new methods for detecting semantic inconsistencies within short-form social media video posts, based on contrastive learning and masked language modeling. We demonstrate that our new approaches outperform current state-of-the-art methods on both artificial data generated by random-swapping of positive samples and in the wild on a new manually-labeled test set for semantic misinformation.</description><subject>Digital media</subject><subject>False information</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Supervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c0szsxLyy_KTSzJzM9TcEktSU0GszLzFILzkzMTcxR8U1MyExXCMlNS8xUC8otLinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMjS1MjQ3MDcmDhVAEX3NFs</recordid><startdate>20220731</startdate><enddate>20220731</enddate><creator>Wang, Kehan</creator><creator>Chan, David</creator><creator>Zhao, Seth Z</creator><creator>Canny, John</creator><creator>Zakhor, Avideh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220731</creationdate><title>Misinformation Detection in Social Media Video Posts</title><author>Wang, Kehan ; Chan, David ; Zhao, Seth Z ; Canny, John ; Zakhor, Avideh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26295217073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Digital media</topic><topic>False information</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kehan</creatorcontrib><creatorcontrib>Chan, David</creatorcontrib><creatorcontrib>Zhao, Seth Z</creatorcontrib><creatorcontrib>Canny, John</creatorcontrib><creatorcontrib>Zakhor, Avideh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kehan</au><au>Chan, David</au><au>Zhao, Seth Z</au><au>Canny, John</au><au>Zakhor, Avideh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Misinformation Detection in Social Media Video Posts</atitle><jtitle>arXiv.org</jtitle><date>2022-07-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>With the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such as video and text. Due to the lack of large-scale public data for misinformation detection in multi-modal datasets, we collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data. In this work, we propose two new methods for detecting semantic inconsistencies within short-form social media video posts, based on contrastive learning and masked language modeling. We demonstrate that our new approaches outperform current state-of-the-art methods on both artificial data generated by random-swapping of positive samples and in the wild on a new manually-labeled test set for semantic misinformation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2629521707 |
source | Free E- Journals |
subjects | Digital media False information Semantics Social networks Supervised learning |
title | Misinformation Detection in Social Media Video Posts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Misinformation%20Detection%20in%20Social%20Media%20Video%20Posts&rft.jtitle=arXiv.org&rft.au=Wang,%20Kehan&rft.date=2022-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2629521707%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629521707&rft_id=info:pmid/&rfr_iscdi=true |