Waves in the theory of elasticity for triple porosity materials

The elastic model with triple porosity is considered in connection with the propagation of harmonic in time waves with assigned wavelength. It is shown that there are two transverse waves that are not damped over time and are not affected by the dispersive nature of the triple porosity model. As reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meccanica (Milan) 2022-03, Vol.57 (3), p.641-657
Hauptverfasser: Arusoaie, Andreea, Chiriţă, Stan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 3
container_start_page 641
container_title Meccanica (Milan)
container_volume 57
creator Arusoaie, Andreea
Chiriţă, Stan
description The elastic model with triple porosity is considered in connection with the propagation of harmonic in time waves with assigned wavelength. It is shown that there are two transverse waves that are not damped over time and are not affected by the dispersive nature of the triple porosity model. As regard the longitudinal harmonic in time wave solutions, a dispersion relation is explicitly established like a fifth degree equation with real coefficients and hence it always allows some real roots. Consequently, the existence of four longitudinal wave solutions subject to the effects of dispersion and damping over time is shown: a longitudinal quasi-elastic wave and three longitudinal quasi-pore modes that decrease exponentially over time. The influence of taking into account the pores on the propagation of the longitudinal elastic waves is materialized in: an increase of the propagation speed corroborated with the appearance of the effect of their damping in time. The propagation of the Rayleigh surface waves is addressed and the corresponding secular equation is explicitly established.
doi_str_mv 10.1007/s11012-021-01457-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629408132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629408132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f8cc713f065e521db2fa1b1ec4349b212f8353883a24b6afcd748decf6d7fed63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczSTf7t7EilahYIXxWPIZhPd0jZrkgr99mZdwZuH4cHw3pvhh9Al0GugtLpJABQYoQwIBSEroo7QDGTFSKNEfYxmlDJJlJDyFJ2ltKa0xKicods38-US7nc4f7hxQjzg4LHbmJR72-cD9iHiHPth4_AQYkjjbmuyi73ZpHN04ou4i1-do9eH-5fFI1k9L58WdytiOTSZ-NraCrinSjrJoGuZN9CCs4KLpmXAfM0lr2tumGiV8barRN0561VXedcpPkdXU-8Qw-fepazXYR935aRmijWC1sBZcbHJZcufKTqvh9hvTTxooHoEpSdQuoDSP6D0WM2nUCrm3buLf9X_pL4B6bdrdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629408132</pqid></control><display><type>article</type><title>Waves in the theory of elasticity for triple porosity materials</title><source>SpringerNature Journals</source><creator>Arusoaie, Andreea ; Chiriţă, Stan</creator><creatorcontrib>Arusoaie, Andreea ; Chiriţă, Stan</creatorcontrib><description>The elastic model with triple porosity is considered in connection with the propagation of harmonic in time waves with assigned wavelength. It is shown that there are two transverse waves that are not damped over time and are not affected by the dispersive nature of the triple porosity model. As regard the longitudinal harmonic in time wave solutions, a dispersion relation is explicitly established like a fifth degree equation with real coefficients and hence it always allows some real roots. Consequently, the existence of four longitudinal wave solutions subject to the effects of dispersion and damping over time is shown: a longitudinal quasi-elastic wave and three longitudinal quasi-pore modes that decrease exponentially over time. The influence of taking into account the pores on the propagation of the longitudinal elastic waves is materialized in: an increase of the propagation speed corroborated with the appearance of the effect of their damping in time. The propagation of the Rayleigh surface waves is addressed and the corresponding secular equation is explicitly established.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-021-01457-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Damping ; Elastic waves ; Engineering ; Longitudinal waves ; Mechanical Engineering ; Porosity ; Propagation ; Surface waves ; Transverse waves ; Wave dispersion ; Wave propagation</subject><ispartof>Meccanica (Milan), 2022-03, Vol.57 (3), p.641-657</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f8cc713f065e521db2fa1b1ec4349b212f8353883a24b6afcd748decf6d7fed63</citedby><cites>FETCH-LOGICAL-c319t-f8cc713f065e521db2fa1b1ec4349b212f8353883a24b6afcd748decf6d7fed63</cites><orcidid>0000-0001-6660-1288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-021-01457-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-021-01457-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Arusoaie, Andreea</creatorcontrib><creatorcontrib>Chiriţă, Stan</creatorcontrib><title>Waves in the theory of elasticity for triple porosity materials</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>The elastic model with triple porosity is considered in connection with the propagation of harmonic in time waves with assigned wavelength. It is shown that there are two transverse waves that are not damped over time and are not affected by the dispersive nature of the triple porosity model. As regard the longitudinal harmonic in time wave solutions, a dispersion relation is explicitly established like a fifth degree equation with real coefficients and hence it always allows some real roots. Consequently, the existence of four longitudinal wave solutions subject to the effects of dispersion and damping over time is shown: a longitudinal quasi-elastic wave and three longitudinal quasi-pore modes that decrease exponentially over time. The influence of taking into account the pores on the propagation of the longitudinal elastic waves is materialized in: an increase of the propagation speed corroborated with the appearance of the effect of their damping in time. The propagation of the Rayleigh surface waves is addressed and the corresponding secular equation is explicitly established.</description><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Damping</subject><subject>Elastic waves</subject><subject>Engineering</subject><subject>Longitudinal waves</subject><subject>Mechanical Engineering</subject><subject>Porosity</subject><subject>Propagation</subject><subject>Surface waves</subject><subject>Transverse waves</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczSTf7t7EilahYIXxWPIZhPd0jZrkgr99mZdwZuH4cHw3pvhh9Al0GugtLpJABQYoQwIBSEroo7QDGTFSKNEfYxmlDJJlJDyFJ2ltKa0xKicods38-US7nc4f7hxQjzg4LHbmJR72-cD9iHiHPth4_AQYkjjbmuyi73ZpHN04ou4i1-do9eH-5fFI1k9L58WdytiOTSZ-NraCrinSjrJoGuZN9CCs4KLpmXAfM0lr2tumGiV8barRN0561VXedcpPkdXU-8Qw-fepazXYR935aRmijWC1sBZcbHJZcufKTqvh9hvTTxooHoEpSdQuoDSP6D0WM2nUCrm3buLf9X_pL4B6bdrdQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Arusoaie, Andreea</creator><creator>Chiriţă, Stan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6660-1288</orcidid></search><sort><creationdate>20220301</creationdate><title>Waves in the theory of elasticity for triple porosity materials</title><author>Arusoaie, Andreea ; Chiriţă, Stan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f8cc713f065e521db2fa1b1ec4349b212f8353883a24b6afcd748decf6d7fed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Damping</topic><topic>Elastic waves</topic><topic>Engineering</topic><topic>Longitudinal waves</topic><topic>Mechanical Engineering</topic><topic>Porosity</topic><topic>Propagation</topic><topic>Surface waves</topic><topic>Transverse waves</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arusoaie, Andreea</creatorcontrib><creatorcontrib>Chiriţă, Stan</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arusoaie, Andreea</au><au>Chiriţă, Stan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waves in the theory of elasticity for triple porosity materials</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>641</spage><epage>657</epage><pages>641-657</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>The elastic model with triple porosity is considered in connection with the propagation of harmonic in time waves with assigned wavelength. It is shown that there are two transverse waves that are not damped over time and are not affected by the dispersive nature of the triple porosity model. As regard the longitudinal harmonic in time wave solutions, a dispersion relation is explicitly established like a fifth degree equation with real coefficients and hence it always allows some real roots. Consequently, the existence of four longitudinal wave solutions subject to the effects of dispersion and damping over time is shown: a longitudinal quasi-elastic wave and three longitudinal quasi-pore modes that decrease exponentially over time. The influence of taking into account the pores on the propagation of the longitudinal elastic waves is materialized in: an increase of the propagation speed corroborated with the appearance of the effect of their damping in time. The propagation of the Rayleigh surface waves is addressed and the corresponding secular equation is explicitly established.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-021-01457-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6660-1288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2022-03, Vol.57 (3), p.641-657
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_journals_2629408132
source SpringerNature Journals
subjects Automotive Engineering
Civil Engineering
Classical Mechanics
Damping
Elastic waves
Engineering
Longitudinal waves
Mechanical Engineering
Porosity
Propagation
Surface waves
Transverse waves
Wave dispersion
Wave propagation
title Waves in the theory of elasticity for triple porosity materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waves%20in%20the%20theory%20of%20elasticity%20for%20triple%20porosity%20materials&rft.jtitle=Meccanica%20(Milan)&rft.au=Arusoaie,%20Andreea&rft.date=2022-03-01&rft.volume=57&rft.issue=3&rft.spage=641&rft.epage=657&rft.pages=641-657&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-021-01457-6&rft_dat=%3Cproquest_cross%3E2629408132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629408132&rft_id=info:pmid/&rfr_iscdi=true