Filtering for Discrete-Time Takagi-Sugeno Fuzzy Nonhomogeneous Markov Jump Systems With Quantization Effects

This article deals with the problem of H_{\infty } and l_{2}-l_{\infty } filtering for discrete-time Takagi-Sugeno fuzzy nonhomogeneous Markov jump systems with quantization effects, respectively. The time-varying transition probabilities are in a polytope set. To reduce conservativeness, a mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-02, Vol.52 (2), p.982-995
Hauptverfasser: Hua, Mingang, Qian, Yangyang, Deng, Feiqi, Fei, Juntao, Cheng, Pei, Chen, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 2
container_start_page 982
container_title IEEE transactions on cybernetics
container_volume 52
creator Hua, Mingang
Qian, Yangyang
Deng, Feiqi
Fei, Juntao
Cheng, Pei
Chen, Hua
description This article deals with the problem of H_{\infty } and l_{2}-l_{\infty } filtering for discrete-time Takagi-Sugeno fuzzy nonhomogeneous Markov jump systems with quantization effects, respectively. The time-varying transition probabilities are in a polytope set. To reduce conservativeness, a mode-dependent logarithmic quantizer is considered in this article. Based on the fuzzy-rule-dependent Lyapunov function, sufficient conditions are given such that the filtering error system is stochastically stable and has a prescribed H_{\infty } or l_{2}-l_{\infty } performance index, respectively. Finally, a practical example is provided to illustrate the effectiveness of the proposed fuzzy filter design methods.
doi_str_mv 10.1109/TCYB.2020.2991159
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2629125631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9097942</ieee_id><sourcerecordid>2629125631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3fe5add977af331344f1b83269bb3f0a05c4312e0d1bde1c5e1792f656a4835f3</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhS0EYldlfwBCQpa4cEmxx3ESH6FsWdACQluEOFlOMu56N4m7doLU_vp1aekBX2yNv3l6M4-Ql5zNOWfq3Wrx-8McGLA5KMW5VE_IOfCiygBK-fT0LsozchHjHUunSiVVPSdnAnIJFYNz0i1dN2Jww5paH-hHF5uAI2Yr1yNdmXuzdtnNtMbB0-W0223pNz_c-t6nCvop0q8m3Ps_9MvUb-jNNo7YR_rLjbf0x2SG0e3M6PxAL63FZowvyDNruogXx3tGfi4vV4ur7Pr7p8-L99dZI3I1ZsKiNG2rytJYIbjIc8vrSkCh6lpYZphscsEBWcvrFnkjkZcKbCELk1dCWjEjbw-6m-AfJoyj7tNc2HXmr2kNOStUDpJDQt_8h975KQzJnYYCFAdZJAczwg9UE3yMAa3eBNebsNWc6X0aep-G3qehj2mkntdH5anusT11_Nt9Al4dAIeIp2_FVJm8iUfcIo4N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629125631</pqid></control><display><type>article</type><title>Filtering for Discrete-Time Takagi-Sugeno Fuzzy Nonhomogeneous Markov Jump Systems With Quantization Effects</title><source>IEEE Electronic Library (IEL)</source><creator>Hua, Mingang ; Qian, Yangyang ; Deng, Feiqi ; Fei, Juntao ; Cheng, Pei ; Chen, Hua</creator><creatorcontrib>Hua, Mingang ; Qian, Yangyang ; Deng, Feiqi ; Fei, Juntao ; Cheng, Pei ; Chen, Hua</creatorcontrib><description><![CDATA[This article deals with the problem of <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2}-l_{\infty } </tex-math></inline-formula> filtering for discrete-time Takagi-Sugeno fuzzy nonhomogeneous Markov jump systems with quantization effects, respectively. The time-varying transition probabilities are in a polytope set. To reduce conservativeness, a mode-dependent logarithmic quantizer is considered in this article. Based on the fuzzy-rule-dependent Lyapunov function, sufficient conditions are given such that the filtering error system is stochastically stable and has a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">l_{2}-l_{\infty } </tex-math></inline-formula> performance index, respectively. Finally, a practical example is provided to illustrate the effectiveness of the proposed fuzzy filter design methods.]]></description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2020.2991159</identifier><identifier>PMID: 32452802</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;H∞ and &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₂ – &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l∞ filtering ; Control systems ; Design methodology ; Discrete time ; Discrete-time systems ; Filter design (mathematics) ; Liapunov functions ; Markov jump systems (MJSs) ; Markov processes ; Measurement ; nonhomogeneous ; Performance indices ; quantization ; Quantization (signal) ; Robustness ; Takagi-Sugeno model ; Takagi–Sugeno (T–S) fuzzy ; Transition probabilities</subject><ispartof>IEEE transactions on cybernetics, 2022-02, Vol.52 (2), p.982-995</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3fe5add977af331344f1b83269bb3f0a05c4312e0d1bde1c5e1792f656a4835f3</citedby><cites>FETCH-LOGICAL-c349t-3fe5add977af331344f1b83269bb3f0a05c4312e0d1bde1c5e1792f656a4835f3</cites><orcidid>0000-0001-7954-2125 ; 0000-0002-0257-5647 ; 0000-0003-2406-6525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9097942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9097942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32452802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Mingang</creatorcontrib><creatorcontrib>Qian, Yangyang</creatorcontrib><creatorcontrib>Deng, Feiqi</creatorcontrib><creatorcontrib>Fei, Juntao</creatorcontrib><creatorcontrib>Cheng, Pei</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><title>Filtering for Discrete-Time Takagi-Sugeno Fuzzy Nonhomogeneous Markov Jump Systems With Quantization Effects</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description><![CDATA[This article deals with the problem of <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2}-l_{\infty } </tex-math></inline-formula> filtering for discrete-time Takagi-Sugeno fuzzy nonhomogeneous Markov jump systems with quantization effects, respectively. The time-varying transition probabilities are in a polytope set. To reduce conservativeness, a mode-dependent logarithmic quantizer is considered in this article. Based on the fuzzy-rule-dependent Lyapunov function, sufficient conditions are given such that the filtering error system is stochastically stable and has a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">l_{2}-l_{\infty } </tex-math></inline-formula> performance index, respectively. Finally, a practical example is provided to illustrate the effectiveness of the proposed fuzzy filter design methods.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;H∞ and &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₂ – &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l∞ filtering</subject><subject>Control systems</subject><subject>Design methodology</subject><subject>Discrete time</subject><subject>Discrete-time systems</subject><subject>Filter design (mathematics)</subject><subject>Liapunov functions</subject><subject>Markov jump systems (MJSs)</subject><subject>Markov processes</subject><subject>Measurement</subject><subject>nonhomogeneous</subject><subject>Performance indices</subject><subject>quantization</subject><subject>Quantization (signal)</subject><subject>Robustness</subject><subject>Takagi-Sugeno model</subject><subject>Takagi–Sugeno (T–S) fuzzy</subject><subject>Transition probabilities</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUGP0zAQhS0EYldlfwBCQpa4cEmxx3ESH6FsWdACQluEOFlOMu56N4m7doLU_vp1aekBX2yNv3l6M4-Ql5zNOWfq3Wrx-8McGLA5KMW5VE_IOfCiygBK-fT0LsozchHjHUunSiVVPSdnAnIJFYNz0i1dN2Jww5paH-hHF5uAI2Yr1yNdmXuzdtnNtMbB0-W0223pNz_c-t6nCvop0q8m3Ps_9MvUb-jNNo7YR_rLjbf0x2SG0e3M6PxAL63FZowvyDNruogXx3tGfi4vV4ur7Pr7p8-L99dZI3I1ZsKiNG2rytJYIbjIc8vrSkCh6lpYZphscsEBWcvrFnkjkZcKbCELk1dCWjEjbw-6m-AfJoyj7tNc2HXmr2kNOStUDpJDQt_8h975KQzJnYYCFAdZJAczwg9UE3yMAa3eBNebsNWc6X0aep-G3qehj2mkntdH5anusT11_Nt9Al4dAIeIp2_FVJm8iUfcIo4N</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hua, Mingang</creator><creator>Qian, Yangyang</creator><creator>Deng, Feiqi</creator><creator>Fei, Juntao</creator><creator>Cheng, Pei</creator><creator>Chen, Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7954-2125</orcidid><orcidid>https://orcid.org/0000-0002-0257-5647</orcidid><orcidid>https://orcid.org/0000-0003-2406-6525</orcidid></search><sort><creationdate>20220201</creationdate><title>Filtering for Discrete-Time Takagi-Sugeno Fuzzy Nonhomogeneous Markov Jump Systems With Quantization Effects</title><author>Hua, Mingang ; Qian, Yangyang ; Deng, Feiqi ; Fei, Juntao ; Cheng, Pei ; Chen, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3fe5add977af331344f1b83269bb3f0a05c4312e0d1bde1c5e1792f656a4835f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;H∞ and &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₂ – &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l∞ filtering</topic><topic>Control systems</topic><topic>Design methodology</topic><topic>Discrete time</topic><topic>Discrete-time systems</topic><topic>Filter design (mathematics)</topic><topic>Liapunov functions</topic><topic>Markov jump systems (MJSs)</topic><topic>Markov processes</topic><topic>Measurement</topic><topic>nonhomogeneous</topic><topic>Performance indices</topic><topic>quantization</topic><topic>Quantization (signal)</topic><topic>Robustness</topic><topic>Takagi-Sugeno model</topic><topic>Takagi–Sugeno (T–S) fuzzy</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Mingang</creatorcontrib><creatorcontrib>Qian, Yangyang</creatorcontrib><creatorcontrib>Deng, Feiqi</creatorcontrib><creatorcontrib>Fei, Juntao</creatorcontrib><creatorcontrib>Cheng, Pei</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua, Mingang</au><au>Qian, Yangyang</au><au>Deng, Feiqi</au><au>Fei, Juntao</au><au>Cheng, Pei</au><au>Chen, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filtering for Discrete-Time Takagi-Sugeno Fuzzy Nonhomogeneous Markov Jump Systems With Quantization Effects</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>52</volume><issue>2</issue><spage>982</spage><epage>995</epage><pages>982-995</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract><![CDATA[This article deals with the problem of <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2}-l_{\infty } </tex-math></inline-formula> filtering for discrete-time Takagi-Sugeno fuzzy nonhomogeneous Markov jump systems with quantization effects, respectively. The time-varying transition probabilities are in a polytope set. To reduce conservativeness, a mode-dependent logarithmic quantizer is considered in this article. Based on the fuzzy-rule-dependent Lyapunov function, sufficient conditions are given such that the filtering error system is stochastically stable and has a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">l_{2}-l_{\infty } </tex-math></inline-formula> performance index, respectively. Finally, a practical example is provided to illustrate the effectiveness of the proposed fuzzy filter design methods.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>32452802</pmid><doi>10.1109/TCYB.2020.2991159</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7954-2125</orcidid><orcidid>https://orcid.org/0000-0002-0257-5647</orcidid><orcidid>https://orcid.org/0000-0003-2406-6525</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-02, Vol.52 (2), p.982-995
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2629125631
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H∞ and <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₂ – <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l∞ filtering
Control systems
Design methodology
Discrete time
Discrete-time systems
Filter design (mathematics)
Liapunov functions
Markov jump systems (MJSs)
Markov processes
Measurement
nonhomogeneous
Performance indices
quantization
Quantization (signal)
Robustness
Takagi-Sugeno model
Takagi–Sugeno (T–S) fuzzy
Transition probabilities
title Filtering for Discrete-Time Takagi-Sugeno Fuzzy Nonhomogeneous Markov Jump Systems With Quantization Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filtering%20for%20Discrete-Time%20Takagi-Sugeno%20Fuzzy%20Nonhomogeneous%20Markov%20Jump%20Systems%20With%20Quantization%20Effects&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Hua,%20Mingang&rft.date=2022-02-01&rft.volume=52&rft.issue=2&rft.spage=982&rft.epage=995&rft.pages=982-995&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2020.2991159&rft_dat=%3Cproquest_RIE%3E2629125631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629125631&rft_id=info:pmid/32452802&rft_ieee_id=9097942&rfr_iscdi=true