Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints

Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.16188-16208
Hauptverfasser: Khodadadi, Nima, Snasel, Vaclav, Mirjalili, Seyedali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16208
container_issue
container_start_page 16188
container_title IEEE access
container_volume 10
creator Khodadadi, Nima
Snasel, Vaclav
Mirjalili, Seyedali
description Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.
doi_str_mv 10.1109/ACCESS.2022.3146374
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629125578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695417</ieee_id><doaj_id>oai_doaj_org_article_42d791b93f20415eb6dac164c85a6c9a</doaj_id><sourcerecordid>2629125578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</originalsourceid><addsrcrecordid>eNpVUctOwzAQjBBIVMAXcInEucWP2LGPVSgPqaKHwtnaOE5xlcTFdg_l6zFNhcAXr3ZnZnc0WXaL0QxjJO_nVbVYr2cEETKjuOC0LM6yCcFcTimj_PxPfZndhLBF6YnUYuUkax4OA_RW53Nv40dvYipXu2h7-wXRuiGfdxt3HOWt8_mb34fwH_A-NMbnrxD3Hrr80ZvPvRn0Ia_cEKIHO8RwnV200AVzc_qvsvfHxVv1PF2unl6q-XKqCyTiVEopOEasBYxaLlAyRKBmjAKToilLzupSN1q3RhOBgbQaao2E1pxqUhBGr7KXUbdxsFU7b3vwB-XAqmPD-Y0Cnxx2RhWkKSWuJW0JKjAzNW9AY15owYBrCUnrbtTaeZcchai2bu-HdL4inEhMGCtFQtERpb0LwZv2dytG6icdNaajftJRp3QS63ZkWWPML0OmRApc0m8dqIxY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629125578</pqid></control><display><type>article</type><title>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khodadadi, Nima ; Snasel, Vaclav ; Mirjalili, Seyedali</creator><creatorcontrib>Khodadadi, Nima ; Snasel, Vaclav ; Mirjalili, Seyedali</creatorcontrib><description>Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3146374</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arithmetic ; benchmark ; Benchmark testing ; DAOA ; Dynamic arithmetic optimization algorithm ; frequency constraints ; Genetic algorithms ; Heuristic algorithms ; Heuristic methods ; Iterative methods ; Mathematical analysis ; Mathematical problems ; Metaheuristics ; Multiplication ; Operators (mathematics) ; optimal design ; Optimization ; Optimization algorithms ; Resonant frequencies ; Search problems ; Structural engineering ; Subtraction ; Time-frequency analysis ; truss structures ; Trusses</subject><ispartof>IEEE access, 2022, Vol.10, p.16188-16208</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</citedby><cites>FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</cites><orcidid>0000-0002-1443-9458 ; 0000-0002-9600-8319 ; 0000-0002-8348-6530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695417$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Khodadadi, Nima</creatorcontrib><creatorcontrib>Snasel, Vaclav</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><title>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</title><title>IEEE access</title><addtitle>Access</addtitle><description>Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>DAOA</subject><subject>Dynamic arithmetic optimization algorithm</subject><subject>frequency constraints</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Metaheuristics</subject><subject>Multiplication</subject><subject>Operators (mathematics)</subject><subject>optimal design</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Resonant frequencies</subject><subject>Search problems</subject><subject>Structural engineering</subject><subject>Subtraction</subject><subject>Time-frequency analysis</subject><subject>truss structures</subject><subject>Trusses</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUctOwzAQjBBIVMAXcInEucWP2LGPVSgPqaKHwtnaOE5xlcTFdg_l6zFNhcAXr3ZnZnc0WXaL0QxjJO_nVbVYr2cEETKjuOC0LM6yCcFcTimj_PxPfZndhLBF6YnUYuUkax4OA_RW53Nv40dvYipXu2h7-wXRuiGfdxt3HOWt8_mb34fwH_A-NMbnrxD3Hrr80ZvPvRn0Ia_cEKIHO8RwnV200AVzc_qvsvfHxVv1PF2unl6q-XKqCyTiVEopOEasBYxaLlAyRKBmjAKToilLzupSN1q3RhOBgbQaao2E1pxqUhBGr7KXUbdxsFU7b3vwB-XAqmPD-Y0Cnxx2RhWkKSWuJW0JKjAzNW9AY15owYBrCUnrbtTaeZcchai2bu-HdL4inEhMGCtFQtERpb0LwZv2dytG6icdNaajftJRp3QS63ZkWWPML0OmRApc0m8dqIxY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Khodadadi, Nima</creator><creator>Snasel, Vaclav</creator><creator>Mirjalili, Seyedali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1443-9458</orcidid><orcidid>https://orcid.org/0000-0002-9600-8319</orcidid><orcidid>https://orcid.org/0000-0002-8348-6530</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</title><author>Khodadadi, Nima ; Snasel, Vaclav ; Mirjalili, Seyedali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>DAOA</topic><topic>Dynamic arithmetic optimization algorithm</topic><topic>frequency constraints</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Metaheuristics</topic><topic>Multiplication</topic><topic>Operators (mathematics)</topic><topic>optimal design</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Resonant frequencies</topic><topic>Search problems</topic><topic>Structural engineering</topic><topic>Subtraction</topic><topic>Time-frequency analysis</topic><topic>truss structures</topic><topic>Trusses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodadadi, Nima</creatorcontrib><creatorcontrib>Snasel, Vaclav</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodadadi, Nima</au><au>Snasel, Vaclav</au><au>Mirjalili, Seyedali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>16188</spage><epage>16208</epage><pages>16188-16208</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3146374</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1443-9458</orcidid><orcidid>https://orcid.org/0000-0002-9600-8319</orcidid><orcidid>https://orcid.org/0000-0002-8348-6530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.16188-16208
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2629125578
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Arithmetic
benchmark
Benchmark testing
DAOA
Dynamic arithmetic optimization algorithm
frequency constraints
Genetic algorithms
Heuristic algorithms
Heuristic methods
Iterative methods
Mathematical analysis
Mathematical problems
Metaheuristics
Multiplication
Operators (mathematics)
optimal design
Optimization
Optimization algorithms
Resonant frequencies
Search problems
Structural engineering
Subtraction
Time-frequency analysis
truss structures
Trusses
title Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Arithmetic%20Optimization%20Algorithm%20for%20Truss%20Optimization%20Under%20Natural%20Frequency%20Constraints&rft.jtitle=IEEE%20access&rft.au=Khodadadi,%20Nima&rft.date=2022&rft.volume=10&rft.spage=16188&rft.epage=16208&rft.pages=16188-16208&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3146374&rft_dat=%3Cproquest_cross%3E2629125578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629125578&rft_id=info:pmid/&rft_ieee_id=9695417&rft_doaj_id=oai_doaj_org_article_42d791b93f20415eb6dac164c85a6c9a&rfr_iscdi=true