Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints
Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arith...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.16188-16208 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16208 |
---|---|
container_issue | |
container_start_page | 16188 |
container_title | IEEE access |
container_volume | 10 |
creator | Khodadadi, Nima Snasel, Vaclav Mirjalili, Seyedali |
description | Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations. |
doi_str_mv | 10.1109/ACCESS.2022.3146374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629125578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695417</ieee_id><doaj_id>oai_doaj_org_article_42d791b93f20415eb6dac164c85a6c9a</doaj_id><sourcerecordid>2629125578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</originalsourceid><addsrcrecordid>eNpVUctOwzAQjBBIVMAXcInEucWP2LGPVSgPqaKHwtnaOE5xlcTFdg_l6zFNhcAXr3ZnZnc0WXaL0QxjJO_nVbVYr2cEETKjuOC0LM6yCcFcTimj_PxPfZndhLBF6YnUYuUkax4OA_RW53Nv40dvYipXu2h7-wXRuiGfdxt3HOWt8_mb34fwH_A-NMbnrxD3Hrr80ZvPvRn0Ia_cEKIHO8RwnV200AVzc_qvsvfHxVv1PF2unl6q-XKqCyTiVEopOEasBYxaLlAyRKBmjAKToilLzupSN1q3RhOBgbQaao2E1pxqUhBGr7KXUbdxsFU7b3vwB-XAqmPD-Y0Cnxx2RhWkKSWuJW0JKjAzNW9AY15owYBrCUnrbtTaeZcchai2bu-HdL4inEhMGCtFQtERpb0LwZv2dytG6icdNaajftJRp3QS63ZkWWPML0OmRApc0m8dqIxY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629125578</pqid></control><display><type>article</type><title>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khodadadi, Nima ; Snasel, Vaclav ; Mirjalili, Seyedali</creator><creatorcontrib>Khodadadi, Nima ; Snasel, Vaclav ; Mirjalili, Seyedali</creatorcontrib><description>Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3146374</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arithmetic ; benchmark ; Benchmark testing ; DAOA ; Dynamic arithmetic optimization algorithm ; frequency constraints ; Genetic algorithms ; Heuristic algorithms ; Heuristic methods ; Iterative methods ; Mathematical analysis ; Mathematical problems ; Metaheuristics ; Multiplication ; Operators (mathematics) ; optimal design ; Optimization ; Optimization algorithms ; Resonant frequencies ; Search problems ; Structural engineering ; Subtraction ; Time-frequency analysis ; truss structures ; Trusses</subject><ispartof>IEEE access, 2022, Vol.10, p.16188-16208</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</citedby><cites>FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</cites><orcidid>0000-0002-1443-9458 ; 0000-0002-9600-8319 ; 0000-0002-8348-6530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695417$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Khodadadi, Nima</creatorcontrib><creatorcontrib>Snasel, Vaclav</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><title>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</title><title>IEEE access</title><addtitle>Access</addtitle><description>Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>DAOA</subject><subject>Dynamic arithmetic optimization algorithm</subject><subject>frequency constraints</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Metaheuristics</subject><subject>Multiplication</subject><subject>Operators (mathematics)</subject><subject>optimal design</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Resonant frequencies</subject><subject>Search problems</subject><subject>Structural engineering</subject><subject>Subtraction</subject><subject>Time-frequency analysis</subject><subject>truss structures</subject><subject>Trusses</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUctOwzAQjBBIVMAXcInEucWP2LGPVSgPqaKHwtnaOE5xlcTFdg_l6zFNhcAXr3ZnZnc0WXaL0QxjJO_nVbVYr2cEETKjuOC0LM6yCcFcTimj_PxPfZndhLBF6YnUYuUkax4OA_RW53Nv40dvYipXu2h7-wXRuiGfdxt3HOWt8_mb34fwH_A-NMbnrxD3Hrr80ZvPvRn0Ia_cEKIHO8RwnV200AVzc_qvsvfHxVv1PF2unl6q-XKqCyTiVEopOEasBYxaLlAyRKBmjAKToilLzupSN1q3RhOBgbQaao2E1pxqUhBGr7KXUbdxsFU7b3vwB-XAqmPD-Y0Cnxx2RhWkKSWuJW0JKjAzNW9AY15owYBrCUnrbtTaeZcchai2bu-HdL4inEhMGCtFQtERpb0LwZv2dytG6icdNaajftJRp3QS63ZkWWPML0OmRApc0m8dqIxY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Khodadadi, Nima</creator><creator>Snasel, Vaclav</creator><creator>Mirjalili, Seyedali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1443-9458</orcidid><orcidid>https://orcid.org/0000-0002-9600-8319</orcidid><orcidid>https://orcid.org/0000-0002-8348-6530</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</title><author>Khodadadi, Nima ; Snasel, Vaclav ; Mirjalili, Seyedali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-99986105fa10f6800222ab553a598d7765b7cdccfec281a2fcabc08cc63c24253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>DAOA</topic><topic>Dynamic arithmetic optimization algorithm</topic><topic>frequency constraints</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Metaheuristics</topic><topic>Multiplication</topic><topic>Operators (mathematics)</topic><topic>optimal design</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Resonant frequencies</topic><topic>Search problems</topic><topic>Structural engineering</topic><topic>Subtraction</topic><topic>Time-frequency analysis</topic><topic>truss structures</topic><topic>Trusses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodadadi, Nima</creatorcontrib><creatorcontrib>Snasel, Vaclav</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodadadi, Nima</au><au>Snasel, Vaclav</au><au>Mirjalili, Seyedali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>16188</spage><epage>16208</epage><pages>16188-16208</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Metaheuristic algorithms have successfully been used to solve any type of optimization problem in the field of structural engineering. The newly proposed Arithmetic Optimization Algorithm (AOA) has recently been presented for mathematical problems. The AOA is a metaheuristic that uses the main arithmetic operators' distribution behavior, such as multiplication, division, subtraction, and addition in mathematics. In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms ' efficiency is obtained by five classical engineering problems and optimizing different truss structures under various loading conditions and limitations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3146374</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1443-9458</orcidid><orcidid>https://orcid.org/0000-0002-9600-8319</orcidid><orcidid>https://orcid.org/0000-0002-8348-6530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.16188-16208 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2629125578 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Arithmetic benchmark Benchmark testing DAOA Dynamic arithmetic optimization algorithm frequency constraints Genetic algorithms Heuristic algorithms Heuristic methods Iterative methods Mathematical analysis Mathematical problems Metaheuristics Multiplication Operators (mathematics) optimal design Optimization Optimization algorithms Resonant frequencies Search problems Structural engineering Subtraction Time-frequency analysis truss structures Trusses |
title | Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Arithmetic%20Optimization%20Algorithm%20for%20Truss%20Optimization%20Under%20Natural%20Frequency%20Constraints&rft.jtitle=IEEE%20access&rft.au=Khodadadi,%20Nima&rft.date=2022&rft.volume=10&rft.spage=16188&rft.epage=16208&rft.pages=16188-16208&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3146374&rft_dat=%3Cproquest_cross%3E2629125578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629125578&rft_id=info:pmid/&rft_ieee_id=9695417&rft_doaj_id=oai_doaj_org_article_42d791b93f20415eb6dac164c85a6c9a&rfr_iscdi=true |