Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications

This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2008-08, Vol.36 (4), p.1833-1842
Hauptverfasser: Borghesi, Marco, Cecchetti, Carlo Alberto, Toncian, Toma, Fuchs, Julien, Romagnani, Lorenzo, Kar, Satyabrata, Wilson, P. A., Antici, Patrizio, Audebert, Patrick, Brambrink, Erik, Pipahl, Ariane, Amin, Munib, Jung, Ralph, Osterholz, Jens, Willi, Oswald, Nazarov, Wigen, Clarke, Robert J., Notley, Margaret, Neely, David, Mora, Patrick, Grismayer, Thomas, Schurtz, Guy, Schiavi, Angelo, Sentoku, Yasuhiko, d'Humieres, Emanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1842
container_issue 4
container_start_page 1833
container_title IEEE transactions on plasma science
container_volume 36
creator Borghesi, Marco
Cecchetti, Carlo Alberto
Toncian, Toma
Fuchs, Julien
Romagnani, Lorenzo
Kar, Satyabrata
Wilson, P. A.
Antici, Patrizio
Audebert, Patrick
Brambrink, Erik
Pipahl, Ariane
Amin, Munib
Jung, Ralph
Osterholz, Jens
Willi, Oswald
Nazarov, Wigen
Clarke, Robert J.
Notley, Margaret
Neely, David
Mora, Patrick
Grismayer, Thomas
Schurtz, Guy
Schiavi, Angelo
Sentoku, Yasuhiko
d'Humieres, Emanuel
description This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted protons and select monochromatic beamlets out of the broad-spectrum beam. This approach could be advantageous in view of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
doi_str_mv 10.1109/TPS.2008.927142
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2629125005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4598936</ieee_id><sourcerecordid>875036293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a2841e1948057cfb8c748443727da1acdc94ec81e48bc2a01b92f58d504dd7a83</originalsourceid><addsrcrecordid>eNp10ctLXDEUBvBQWujUdt2Fm0uLuPGOOXncJO7Gd2GK0uo6nMnNrZH7MrkjtH-9cUZcFFwF8v3OIeEj5CvQOQA1hzfXv-eMUj03TIFg78gMDDel4Uq-JzNKDS-5Bv6RfErpnlIQkrIZcUtMPpanMTz6vriOwzT0xbHHLh0VC-d86yNOId_99O4O-5C6g01cXI1T6MK_TXhQYF8Xv7AOw5-I411wxWIc2-A2afpMPjTYJv_l5dwht-dnNyeX5fLq4sfJYlk6rvRUItMCPBihqVSuWWmnhBaCK6ZqBHS1M8I7DV7olWNIYWVYI3UtqahrhZrvkP3t3jEOD2ufJtuFlL_QYu-HdbJaScorZniW3_-T98M69vlxlmUATFIqs_r2lgIjQSkBKqPDLXJxSCn6xo4xdBj_WqD2uRibi7HPxdhtMXli72UtJodtE7F3Ib2OMVpJxqoqu92tC97711hIow2v-BP8-pT7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195177417</pqid></control><display><type>article</type><title>Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Borghesi, Marco ; Cecchetti, Carlo Alberto ; Toncian, Toma ; Fuchs, Julien ; Romagnani, Lorenzo ; Kar, Satyabrata ; Wilson, P. A. ; Antici, Patrizio ; Audebert, Patrick ; Brambrink, Erik ; Pipahl, Ariane ; Amin, Munib ; Jung, Ralph ; Osterholz, Jens ; Willi, Oswald ; Nazarov, Wigen ; Clarke, Robert J. ; Notley, Margaret ; Neely, David ; Mora, Patrick ; Grismayer, Thomas ; Schurtz, Guy ; Schiavi, Angelo ; Sentoku, Yasuhiko ; d'Humieres, Emanuel</creator><creatorcontrib>Borghesi, Marco ; Cecchetti, Carlo Alberto ; Toncian, Toma ; Fuchs, Julien ; Romagnani, Lorenzo ; Kar, Satyabrata ; Wilson, P. A. ; Antici, Patrizio ; Audebert, Patrick ; Brambrink, Erik ; Pipahl, Ariane ; Amin, Munib ; Jung, Ralph ; Osterholz, Jens ; Willi, Oswald ; Nazarov, Wigen ; Clarke, Robert J. ; Notley, Margaret ; Neely, David ; Mora, Patrick ; Grismayer, Thomas ; Schurtz, Guy ; Schiavi, Angelo ; Sentoku, Yasuhiko ; d'Humieres, Emanuel</creatorcontrib><description>This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted protons and select monochromatic beamlets out of the broad-spectrum beam. This approach could be advantageous in view of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2008.927142</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Beams (radiation) ; Electric and magnetic measurements ; Electric fields ; Emittance ; Exact sciences and technology ; Experiments ; Fast ignition of compressed fusion fuels ; Feasibility ; High power lasers ; Investigations ; Ion sources ; Laser applications ; Laser beams ; laser fusion ; Laser inertial confinement ; Laser theory ; Lasers ; Magnetic fields ; magnetic-field measurement ; Microlenses ; Optical control ; Optimization ; Particle beams ; particle-beam control ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma diagnostic techniques and instrumentation ; Plasma production and heating ; Plasma production and heating by laser beams ; Plasmas (physics) ; Proton beams ; Protons ; Radiography ; Sheaths ; Surface emitting lasers</subject><ispartof>IEEE transactions on plasma science, 2008-08, Vol.36 (4), p.1833-1842</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2008</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a2841e1948057cfb8c748443727da1acdc94ec81e48bc2a01b92f58d504dd7a83</citedby><cites>FETCH-LOGICAL-c378t-a2841e1948057cfb8c748443727da1acdc94ec81e48bc2a01b92f58d504dd7a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4598936$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4598936$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20652266$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borghesi, Marco</creatorcontrib><creatorcontrib>Cecchetti, Carlo Alberto</creatorcontrib><creatorcontrib>Toncian, Toma</creatorcontrib><creatorcontrib>Fuchs, Julien</creatorcontrib><creatorcontrib>Romagnani, Lorenzo</creatorcontrib><creatorcontrib>Kar, Satyabrata</creatorcontrib><creatorcontrib>Wilson, P. A.</creatorcontrib><creatorcontrib>Antici, Patrizio</creatorcontrib><creatorcontrib>Audebert, Patrick</creatorcontrib><creatorcontrib>Brambrink, Erik</creatorcontrib><creatorcontrib>Pipahl, Ariane</creatorcontrib><creatorcontrib>Amin, Munib</creatorcontrib><creatorcontrib>Jung, Ralph</creatorcontrib><creatorcontrib>Osterholz, Jens</creatorcontrib><creatorcontrib>Willi, Oswald</creatorcontrib><creatorcontrib>Nazarov, Wigen</creatorcontrib><creatorcontrib>Clarke, Robert J.</creatorcontrib><creatorcontrib>Notley, Margaret</creatorcontrib><creatorcontrib>Neely, David</creatorcontrib><creatorcontrib>Mora, Patrick</creatorcontrib><creatorcontrib>Grismayer, Thomas</creatorcontrib><creatorcontrib>Schurtz, Guy</creatorcontrib><creatorcontrib>Schiavi, Angelo</creatorcontrib><creatorcontrib>Sentoku, Yasuhiko</creatorcontrib><creatorcontrib>d'Humieres, Emanuel</creatorcontrib><title>Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted protons and select monochromatic beamlets out of the broad-spectrum beam. This approach could be advantageous in view of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.</description><subject>Acceleration</subject><subject>Beams (radiation)</subject><subject>Electric and magnetic measurements</subject><subject>Electric fields</subject><subject>Emittance</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Fast ignition of compressed fusion fuels</subject><subject>Feasibility</subject><subject>High power lasers</subject><subject>Investigations</subject><subject>Ion sources</subject><subject>Laser applications</subject><subject>Laser beams</subject><subject>laser fusion</subject><subject>Laser inertial confinement</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>magnetic-field measurement</subject><subject>Microlenses</subject><subject>Optical control</subject><subject>Optimization</subject><subject>Particle beams</subject><subject>particle-beam control</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>Plasma production and heating</subject><subject>Plasma production and heating by laser beams</subject><subject>Plasmas (physics)</subject><subject>Proton beams</subject><subject>Protons</subject><subject>Radiography</subject><subject>Sheaths</subject><subject>Surface emitting lasers</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp10ctLXDEUBvBQWujUdt2Fm0uLuPGOOXncJO7Gd2GK0uo6nMnNrZH7MrkjtH-9cUZcFFwF8v3OIeEj5CvQOQA1hzfXv-eMUj03TIFg78gMDDel4Uq-JzNKDS-5Bv6RfErpnlIQkrIZcUtMPpanMTz6vriOwzT0xbHHLh0VC-d86yNOId_99O4O-5C6g01cXI1T6MK_TXhQYF8Xv7AOw5-I411wxWIc2-A2afpMPjTYJv_l5dwht-dnNyeX5fLq4sfJYlk6rvRUItMCPBihqVSuWWmnhBaCK6ZqBHS1M8I7DV7olWNIYWVYI3UtqahrhZrvkP3t3jEOD2ufJtuFlL_QYu-HdbJaScorZniW3_-T98M69vlxlmUATFIqs_r2lgIjQSkBKqPDLXJxSCn6xo4xdBj_WqD2uRibi7HPxdhtMXli72UtJodtE7F3Ib2OMVpJxqoqu92tC97711hIow2v-BP8-pT7</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Borghesi, Marco</creator><creator>Cecchetti, Carlo Alberto</creator><creator>Toncian, Toma</creator><creator>Fuchs, Julien</creator><creator>Romagnani, Lorenzo</creator><creator>Kar, Satyabrata</creator><creator>Wilson, P. A.</creator><creator>Antici, Patrizio</creator><creator>Audebert, Patrick</creator><creator>Brambrink, Erik</creator><creator>Pipahl, Ariane</creator><creator>Amin, Munib</creator><creator>Jung, Ralph</creator><creator>Osterholz, Jens</creator><creator>Willi, Oswald</creator><creator>Nazarov, Wigen</creator><creator>Clarke, Robert J.</creator><creator>Notley, Margaret</creator><creator>Neely, David</creator><creator>Mora, Patrick</creator><creator>Grismayer, Thomas</creator><creator>Schurtz, Guy</creator><creator>Schiavi, Angelo</creator><creator>Sentoku, Yasuhiko</creator><creator>d'Humieres, Emanuel</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20080801</creationdate><title>Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications</title><author>Borghesi, Marco ; Cecchetti, Carlo Alberto ; Toncian, Toma ; Fuchs, Julien ; Romagnani, Lorenzo ; Kar, Satyabrata ; Wilson, P. A. ; Antici, Patrizio ; Audebert, Patrick ; Brambrink, Erik ; Pipahl, Ariane ; Amin, Munib ; Jung, Ralph ; Osterholz, Jens ; Willi, Oswald ; Nazarov, Wigen ; Clarke, Robert J. ; Notley, Margaret ; Neely, David ; Mora, Patrick ; Grismayer, Thomas ; Schurtz, Guy ; Schiavi, Angelo ; Sentoku, Yasuhiko ; d'Humieres, Emanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a2841e1948057cfb8c748443727da1acdc94ec81e48bc2a01b92f58d504dd7a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Beams (radiation)</topic><topic>Electric and magnetic measurements</topic><topic>Electric fields</topic><topic>Emittance</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Fast ignition of compressed fusion fuels</topic><topic>Feasibility</topic><topic>High power lasers</topic><topic>Investigations</topic><topic>Ion sources</topic><topic>Laser applications</topic><topic>Laser beams</topic><topic>laser fusion</topic><topic>Laser inertial confinement</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>magnetic-field measurement</topic><topic>Microlenses</topic><topic>Optical control</topic><topic>Optimization</topic><topic>Particle beams</topic><topic>particle-beam control</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>Plasma production and heating</topic><topic>Plasma production and heating by laser beams</topic><topic>Plasmas (physics)</topic><topic>Proton beams</topic><topic>Protons</topic><topic>Radiography</topic><topic>Sheaths</topic><topic>Surface emitting lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borghesi, Marco</creatorcontrib><creatorcontrib>Cecchetti, Carlo Alberto</creatorcontrib><creatorcontrib>Toncian, Toma</creatorcontrib><creatorcontrib>Fuchs, Julien</creatorcontrib><creatorcontrib>Romagnani, Lorenzo</creatorcontrib><creatorcontrib>Kar, Satyabrata</creatorcontrib><creatorcontrib>Wilson, P. A.</creatorcontrib><creatorcontrib>Antici, Patrizio</creatorcontrib><creatorcontrib>Audebert, Patrick</creatorcontrib><creatorcontrib>Brambrink, Erik</creatorcontrib><creatorcontrib>Pipahl, Ariane</creatorcontrib><creatorcontrib>Amin, Munib</creatorcontrib><creatorcontrib>Jung, Ralph</creatorcontrib><creatorcontrib>Osterholz, Jens</creatorcontrib><creatorcontrib>Willi, Oswald</creatorcontrib><creatorcontrib>Nazarov, Wigen</creatorcontrib><creatorcontrib>Clarke, Robert J.</creatorcontrib><creatorcontrib>Notley, Margaret</creatorcontrib><creatorcontrib>Neely, David</creatorcontrib><creatorcontrib>Mora, Patrick</creatorcontrib><creatorcontrib>Grismayer, Thomas</creatorcontrib><creatorcontrib>Schurtz, Guy</creatorcontrib><creatorcontrib>Schiavi, Angelo</creatorcontrib><creatorcontrib>Sentoku, Yasuhiko</creatorcontrib><creatorcontrib>d'Humieres, Emanuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borghesi, Marco</au><au>Cecchetti, Carlo Alberto</au><au>Toncian, Toma</au><au>Fuchs, Julien</au><au>Romagnani, Lorenzo</au><au>Kar, Satyabrata</au><au>Wilson, P. A.</au><au>Antici, Patrizio</au><au>Audebert, Patrick</au><au>Brambrink, Erik</au><au>Pipahl, Ariane</au><au>Amin, Munib</au><au>Jung, Ralph</au><au>Osterholz, Jens</au><au>Willi, Oswald</au><au>Nazarov, Wigen</au><au>Clarke, Robert J.</au><au>Notley, Margaret</au><au>Neely, David</au><au>Mora, Patrick</au><au>Grismayer, Thomas</au><au>Schurtz, Guy</au><au>Schiavi, Angelo</au><au>Sentoku, Yasuhiko</au><au>d'Humieres, Emanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>36</volume><issue>4</issue><spage>1833</spage><epage>1842</epage><pages>1833-1842</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted protons and select monochromatic beamlets out of the broad-spectrum beam. This approach could be advantageous in view of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2008.927142</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2008-08, Vol.36 (4), p.1833-1842
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_2629125005
source IEEE Electronic Library (IEL)
subjects Acceleration
Beams (radiation)
Electric and magnetic measurements
Electric fields
Emittance
Exact sciences and technology
Experiments
Fast ignition of compressed fusion fuels
Feasibility
High power lasers
Investigations
Ion sources
Laser applications
Laser beams
laser fusion
Laser inertial confinement
Laser theory
Lasers
Magnetic fields
magnetic-field measurement
Microlenses
Optical control
Optimization
Particle beams
particle-beam control
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma applications
Plasma diagnostic techniques and instrumentation
Plasma production and heating
Plasma production and heating by laser beams
Plasmas (physics)
Proton beams
Protons
Radiography
Sheaths
Surface emitting lasers
title Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Driven%20Proton%20Beams:%20Acceleration%20Mechanism,%20Beam%20Optimization,%20and%20Radiographic%20Applications&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Borghesi,%20Marco&rft.date=2008-08-01&rft.volume=36&rft.issue=4&rft.spage=1833&rft.epage=1842&rft.pages=1833-1842&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2008.927142&rft_dat=%3Cproquest_RIE%3E875036293%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195177417&rft_id=info:pmid/&rft_ieee_id=4598936&rfr_iscdi=true