Ensemble Many-Objective Optimization Algorithm Based on Voting Mechanism
Sorting solutions play a key role in using evolutionary algorithms (EAs) to solve many-objective optimization problems (MaOPs). Generally, different solution-sorting methods possess different advantages in dealing with distinct MaOPs. Focusing on this characteristic, this article proposes a general...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2022-03, Vol.52 (3), p.1716-1730 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1730 |
---|---|
container_issue | 3 |
container_start_page | 1716 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 52 |
creator | Qiu, Wenbo Zhu, Jianghan Wu, Guohua Chen, Huangke Pedrycz, Witold Suganthan, Ponnuthurai Nagaratnam |
description | Sorting solutions play a key role in using evolutionary algorithms (EAs) to solve many-objective optimization problems (MaOPs). Generally, different solution-sorting methods possess different advantages in dealing with distinct MaOPs. Focusing on this characteristic, this article proposes a general voting-mechanism-based ensemble framework (VMEF), where different solution-sorting methods can be integrated and work cooperatively to select promising solutions in a more robust manner. In addition, a strategy is designed to calculate the contribution of each solution-sorting method and then the total votes are adaptively allocated to different solution-sorting methods according to their contribution. Solution-sorting methods that make more contribution to the optimization process are rewarded with more votes and the solution-sorting methods with poor contribution will be punished in a period of time, which offers a good feedback to the optimization process. Finally, to test the performance of VMEF, extensive experiments are conducted in which VMEF is compared with five state-of-the-art peer many-objective EAs, including NSGA-III, SPEA/R, hpaEA, BiGE, and grid-based evolutionary algorithm. Experimental results demonstrate that the overall performance of VMEF is significantly better than that of these comparative algorithms. |
doi_str_mv | 10.1109/TSMC.2020.3034180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2629124845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9266095</ieee_id><sourcerecordid>2629124845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3ebed41f18718a8c9a21ef500790429b1dbbe1cc5e5229326d22b3df0e2790893</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQsX6A0ovgZ5jZ2aTdfdoxdaC4qG21yUfE10xic3Ggv31jSie5mV43hl4hHhEGCKCeVl9LiZDAoKhBBmhhhvRI1Q6JJJ0e82o7sXA-y0AIGklQfXEbFp5LtMdB4ukOobLdMtZ6345WO5bV7q_pHV1FYx367px7aYMXhPPedCtvuvWVetgwdkmqZwvH8Rdkew8Dy6zL77epqvJLJwv3z8m43mYkZFtKDnlPMIC9Qh1ojOTEHIRA4wMRGRSzNOUMctijqkrkMqJUpkXwNQR2si-eD7f3Tf1z4F9a7f1oam6l5YUGaRIR3FH4ZnKmtr7hgu7b1yZNEeLYE_O7MmZPTmzF2dd5-ncccx85Q0pBSaW_-CNZrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629124845</pqid></control><display><type>article</type><title>Ensemble Many-Objective Optimization Algorithm Based on Voting Mechanism</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Wenbo ; Zhu, Jianghan ; Wu, Guohua ; Chen, Huangke ; Pedrycz, Witold ; Suganthan, Ponnuthurai Nagaratnam</creator><creatorcontrib>Qiu, Wenbo ; Zhu, Jianghan ; Wu, Guohua ; Chen, Huangke ; Pedrycz, Witold ; Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><description>Sorting solutions play a key role in using evolutionary algorithms (EAs) to solve many-objective optimization problems (MaOPs). Generally, different solution-sorting methods possess different advantages in dealing with distinct MaOPs. Focusing on this characteristic, this article proposes a general voting-mechanism-based ensemble framework (VMEF), where different solution-sorting methods can be integrated and work cooperatively to select promising solutions in a more robust manner. In addition, a strategy is designed to calculate the contribution of each solution-sorting method and then the total votes are adaptively allocated to different solution-sorting methods according to their contribution. Solution-sorting methods that make more contribution to the optimization process are rewarded with more votes and the solution-sorting methods with poor contribution will be punished in a period of time, which offers a good feedback to the optimization process. Finally, to test the performance of VMEF, extensive experiments are conducted in which VMEF is compared with five state-of-the-art peer many-objective EAs, including NSGA-III, SPEA/R, hpaEA, BiGE, and grid-based evolutionary algorithm. Experimental results demonstrate that the overall performance of VMEF is significantly better than that of these comparative algorithms.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2020.3034180</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Ensemble framework ; Evolutionary algorithms ; Evolutionary computation ; evolutionary optimization ; Genetic algorithms ; Heuristic algorithms ; many-objective optimization ; Multiple objective analysis ; Optimization ; Sociology ; solution-sorting methods ; Sorting ; Sorting algorithms ; Transportation ; Voting</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2022-03, Vol.52 (3), p.1716-1730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3ebed41f18718a8c9a21ef500790429b1dbbe1cc5e5229326d22b3df0e2790893</citedby><cites>FETCH-LOGICAL-c293t-3ebed41f18718a8c9a21ef500790429b1dbbe1cc5e5229326d22b3df0e2790893</cites><orcidid>0000-0003-1552-9620 ; 0000-0002-9335-9930 ; 0000-0003-0901-5105 ; 0000-0002-3748-3099 ; 0000-0003-2463-5580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9266095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9266095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Wenbo</creatorcontrib><creatorcontrib>Zhu, Jianghan</creatorcontrib><creatorcontrib>Wu, Guohua</creatorcontrib><creatorcontrib>Chen, Huangke</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><creatorcontrib>Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><title>Ensemble Many-Objective Optimization Algorithm Based on Voting Mechanism</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Sorting solutions play a key role in using evolutionary algorithms (EAs) to solve many-objective optimization problems (MaOPs). Generally, different solution-sorting methods possess different advantages in dealing with distinct MaOPs. Focusing on this characteristic, this article proposes a general voting-mechanism-based ensemble framework (VMEF), where different solution-sorting methods can be integrated and work cooperatively to select promising solutions in a more robust manner. In addition, a strategy is designed to calculate the contribution of each solution-sorting method and then the total votes are adaptively allocated to different solution-sorting methods according to their contribution. Solution-sorting methods that make more contribution to the optimization process are rewarded with more votes and the solution-sorting methods with poor contribution will be punished in a period of time, which offers a good feedback to the optimization process. Finally, to test the performance of VMEF, extensive experiments are conducted in which VMEF is compared with five state-of-the-art peer many-objective EAs, including NSGA-III, SPEA/R, hpaEA, BiGE, and grid-based evolutionary algorithm. Experimental results demonstrate that the overall performance of VMEF is significantly better than that of these comparative algorithms.</description><subject>Convergence</subject><subject>Ensemble framework</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>evolutionary optimization</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>many-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Sociology</subject><subject>solution-sorting methods</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>Transportation</subject><subject>Voting</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rwkAQhpfSQsX6A0ovgZ5jZ2aTdfdoxdaC4qG21yUfE10xic3Ggv31jSie5mV43hl4hHhEGCKCeVl9LiZDAoKhBBmhhhvRI1Q6JJJ0e82o7sXA-y0AIGklQfXEbFp5LtMdB4ukOobLdMtZ6345WO5bV7q_pHV1FYx367px7aYMXhPPedCtvuvWVetgwdkmqZwvH8Rdkew8Dy6zL77epqvJLJwv3z8m43mYkZFtKDnlPMIC9Qh1ojOTEHIRA4wMRGRSzNOUMctijqkrkMqJUpkXwNQR2si-eD7f3Tf1z4F9a7f1oam6l5YUGaRIR3FH4ZnKmtr7hgu7b1yZNEeLYE_O7MmZPTmzF2dd5-ncccx85Q0pBSaW_-CNZrI</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Qiu, Wenbo</creator><creator>Zhu, Jianghan</creator><creator>Wu, Guohua</creator><creator>Chen, Huangke</creator><creator>Pedrycz, Witold</creator><creator>Suganthan, Ponnuthurai Nagaratnam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1552-9620</orcidid><orcidid>https://orcid.org/0000-0002-9335-9930</orcidid><orcidid>https://orcid.org/0000-0003-0901-5105</orcidid><orcidid>https://orcid.org/0000-0002-3748-3099</orcidid><orcidid>https://orcid.org/0000-0003-2463-5580</orcidid></search><sort><creationdate>20220301</creationdate><title>Ensemble Many-Objective Optimization Algorithm Based on Voting Mechanism</title><author>Qiu, Wenbo ; Zhu, Jianghan ; Wu, Guohua ; Chen, Huangke ; Pedrycz, Witold ; Suganthan, Ponnuthurai Nagaratnam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3ebed41f18718a8c9a21ef500790429b1dbbe1cc5e5229326d22b3df0e2790893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Ensemble framework</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>evolutionary optimization</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>many-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Sociology</topic><topic>solution-sorting methods</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>Transportation</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wenbo</creatorcontrib><creatorcontrib>Zhu, Jianghan</creatorcontrib><creatorcontrib>Wu, Guohua</creatorcontrib><creatorcontrib>Chen, Huangke</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><creatorcontrib>Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Wenbo</au><au>Zhu, Jianghan</au><au>Wu, Guohua</au><au>Chen, Huangke</au><au>Pedrycz, Witold</au><au>Suganthan, Ponnuthurai Nagaratnam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble Many-Objective Optimization Algorithm Based on Voting Mechanism</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>52</volume><issue>3</issue><spage>1716</spage><epage>1730</epage><pages>1716-1730</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Sorting solutions play a key role in using evolutionary algorithms (EAs) to solve many-objective optimization problems (MaOPs). Generally, different solution-sorting methods possess different advantages in dealing with distinct MaOPs. Focusing on this characteristic, this article proposes a general voting-mechanism-based ensemble framework (VMEF), where different solution-sorting methods can be integrated and work cooperatively to select promising solutions in a more robust manner. In addition, a strategy is designed to calculate the contribution of each solution-sorting method and then the total votes are adaptively allocated to different solution-sorting methods according to their contribution. Solution-sorting methods that make more contribution to the optimization process are rewarded with more votes and the solution-sorting methods with poor contribution will be punished in a period of time, which offers a good feedback to the optimization process. Finally, to test the performance of VMEF, extensive experiments are conducted in which VMEF is compared with five state-of-the-art peer many-objective EAs, including NSGA-III, SPEA/R, hpaEA, BiGE, and grid-based evolutionary algorithm. Experimental results demonstrate that the overall performance of VMEF is significantly better than that of these comparative algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2020.3034180</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1552-9620</orcidid><orcidid>https://orcid.org/0000-0002-9335-9930</orcidid><orcidid>https://orcid.org/0000-0003-0901-5105</orcidid><orcidid>https://orcid.org/0000-0002-3748-3099</orcidid><orcidid>https://orcid.org/0000-0003-2463-5580</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2022-03, Vol.52 (3), p.1716-1730 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_proquest_journals_2629124845 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Ensemble framework Evolutionary algorithms Evolutionary computation evolutionary optimization Genetic algorithms Heuristic algorithms many-objective optimization Multiple objective analysis Optimization Sociology solution-sorting methods Sorting Sorting algorithms Transportation Voting |
title | Ensemble Many-Objective Optimization Algorithm Based on Voting Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20Many-Objective%20Optimization%20Algorithm%20Based%20on%20Voting%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Qiu,%20Wenbo&rft.date=2022-03-01&rft.volume=52&rft.issue=3&rft.spage=1716&rft.epage=1730&rft.pages=1716-1730&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2020.3034180&rft_dat=%3Cproquest_RIE%3E2629124845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629124845&rft_id=info:pmid/&rft_ieee_id=9266095&rfr_iscdi=true |