A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2

For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2022-02, Vol.70 (2), p.727-738
Hauptverfasser: Li, Jie, Tang, Xiaohu, Hollanti, Camilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 2
container_start_page 727
container_title IEEE transactions on communications
container_volume 70
creator Li, Jie
Tang, Xiaohu
Hollanti, Camilla
description For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any [n, k] binary MDS array code into a new one, which endows any r=n-k\ge 2 chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining k nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.
doi_str_mv 10.1109/TCOMM.2021.3126751
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2629124565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606891</ieee_id><sourcerecordid>2629124565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-f5352ef4490319ee9bc96d1a8488b51e59e56a19ed202d129ca07068c9cd90933</originalsourceid><addsrcrecordid>eNotj1FLwzAUhYMoOKd_QF8CPnfemzRp8jiqm-JmQedzydpbyNjamnbC_r2B-XQOnI9zOIzdI8wQwT5t8mK9ngkQOJModKbwgk1QKZOAUdklmwBYSHSWmWt2Mww7AEhBygl7n_MltRR8xTfBtUPThYMbfdfy6HjRj_7g9vyjq4l_Uu984L7l6-cvPg_BnXgeg4EXvxT4Qtyyq8btB7r71yn7Xrxs8tdkVSzf8vkq8YhmTBollaAmTS1ItER2W1ldozOpMVuFpCwp7WJSxz81Cls5yECbyla1BSvllD2ee_vQ_RxpGMtddwxtnCyFFhZFqrSK1MOZ8kRU9iEeCafS6thkUf4BzlRWPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629124565</pqid></control><display><type>article</type><title>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jie ; Tang, Xiaohu ; Hollanti, Camilla</creator><creatorcontrib>Li, Jie ; Tang, Xiaohu ; Hollanti, Camilla</creatorcontrib><description><![CDATA[For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any <inline-formula> <tex-math notation="LaTeX">[n, k] </tex-math></inline-formula> binary MDS array code into a new one, which endows any <inline-formula> <tex-math notation="LaTeX">r=n-k\ge 2 </tex-math></inline-formula> chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.]]></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3126751</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Bandwidth ; Bandwidths ; Binary MDS array codes ; Codes ; distributed storage ; high-rate ; Linear codes ; Maintenance engineering ; Mathematics ; Nodes ; optimal rebuilding access ; optimal repair bandwidth ; Optimization ; Rebuilding ; Repair ; Systematics ; Transformations</subject><ispartof>IEEE transactions on communications, 2022-02, Vol.70 (2), p.727-738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7938-7812 ; 0000-0001-5356-8669 ; 0000-0002-7582-7630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Tang, Xiaohu</creatorcontrib><creatorcontrib>Hollanti, Camilla</creatorcontrib><title>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description><![CDATA[For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any <inline-formula> <tex-math notation="LaTeX">[n, k] </tex-math></inline-formula> binary MDS array code into a new one, which endows any <inline-formula> <tex-math notation="LaTeX">r=n-k\ge 2 </tex-math></inline-formula> chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.]]></description><subject>Arrays</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Binary MDS array codes</subject><subject>Codes</subject><subject>distributed storage</subject><subject>high-rate</subject><subject>Linear codes</subject><subject>Maintenance engineering</subject><subject>Mathematics</subject><subject>Nodes</subject><subject>optimal rebuilding access</subject><subject>optimal repair bandwidth</subject><subject>Optimization</subject><subject>Rebuilding</subject><subject>Repair</subject><subject>Systematics</subject><subject>Transformations</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj1FLwzAUhYMoOKd_QF8CPnfemzRp8jiqm-JmQedzydpbyNjamnbC_r2B-XQOnI9zOIzdI8wQwT5t8mK9ngkQOJModKbwgk1QKZOAUdklmwBYSHSWmWt2Mww7AEhBygl7n_MltRR8xTfBtUPThYMbfdfy6HjRj_7g9vyjq4l_Uu984L7l6-cvPg_BnXgeg4EXvxT4Qtyyq8btB7r71yn7Xrxs8tdkVSzf8vkq8YhmTBollaAmTS1ItER2W1ldozOpMVuFpCwp7WJSxz81Cls5yECbyla1BSvllD2ee_vQ_RxpGMtddwxtnCyFFhZFqrSK1MOZ8kRU9iEeCafS6thkUf4BzlRWPw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Li, Jie</creator><creator>Tang, Xiaohu</creator><creator>Hollanti, Camilla</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7938-7812</orcidid><orcidid>https://orcid.org/0000-0001-5356-8669</orcidid><orcidid>https://orcid.org/0000-0002-7582-7630</orcidid></search><sort><creationdate>20220201</creationdate><title>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</title><author>Li, Jie ; Tang, Xiaohu ; Hollanti, Camilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-f5352ef4490319ee9bc96d1a8488b51e59e56a19ed202d129ca07068c9cd90933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Binary MDS array codes</topic><topic>Codes</topic><topic>distributed storage</topic><topic>high-rate</topic><topic>Linear codes</topic><topic>Maintenance engineering</topic><topic>Mathematics</topic><topic>Nodes</topic><topic>optimal rebuilding access</topic><topic>optimal repair bandwidth</topic><topic>Optimization</topic><topic>Rebuilding</topic><topic>Repair</topic><topic>Systematics</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Tang, Xiaohu</creatorcontrib><creatorcontrib>Hollanti, Camilla</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jie</au><au>Tang, Xiaohu</au><au>Hollanti, Camilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>70</volume><issue>2</issue><spage>727</spage><epage>738</epage><pages>727-738</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract><![CDATA[For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any <inline-formula> <tex-math notation="LaTeX">[n, k] </tex-math></inline-formula> binary MDS array code into a new one, which endows any <inline-formula> <tex-math notation="LaTeX">r=n-k\ge 2 </tex-math></inline-formula> chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3126751</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7938-7812</orcidid><orcidid>https://orcid.org/0000-0001-5356-8669</orcidid><orcidid>https://orcid.org/0000-0002-7582-7630</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2022-02, Vol.70 (2), p.727-738
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2629124565
source IEEE Electronic Library (IEL)
subjects Arrays
Bandwidth
Bandwidths
Binary MDS array codes
Codes
distributed storage
high-rate
Linear codes
Maintenance engineering
Mathematics
Nodes
optimal rebuilding access
optimal repair bandwidth
Optimization
Rebuilding
Repair
Systematics
Transformations
title A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generic%20Transformation%20for%20Optimal%20Node%20Repair%20in%20MDS%20Array%20Codes%20Over%20F2&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Li,%20Jie&rft.date=2022-02-01&rft.volume=70&rft.issue=2&rft.spage=727&rft.epage=738&rft.pages=727-738&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3126751&rft_dat=%3Cproquest_RIE%3E2629124565%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629124565&rft_id=info:pmid/&rft_ieee_id=9606891&rfr_iscdi=true