A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2
For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), wher...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2022-02, Vol.70 (2), p.727-738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 2 |
container_start_page | 727 |
container_title | IEEE transactions on communications |
container_volume | 70 |
creator | Li, Jie Tang, Xiaohu Hollanti, Camilla |
description | For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any [n, k] binary MDS array code into a new one, which endows any r=n-k\ge 2 chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining k nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes. |
doi_str_mv | 10.1109/TCOMM.2021.3126751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2629124565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606891</ieee_id><sourcerecordid>2629124565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-f5352ef4490319ee9bc96d1a8488b51e59e56a19ed202d129ca07068c9cd90933</originalsourceid><addsrcrecordid>eNotj1FLwzAUhYMoOKd_QF8CPnfemzRp8jiqm-JmQedzydpbyNjamnbC_r2B-XQOnI9zOIzdI8wQwT5t8mK9ngkQOJModKbwgk1QKZOAUdklmwBYSHSWmWt2Mww7AEhBygl7n_MltRR8xTfBtUPThYMbfdfy6HjRj_7g9vyjq4l_Uu984L7l6-cvPg_BnXgeg4EXvxT4Qtyyq8btB7r71yn7Xrxs8tdkVSzf8vkq8YhmTBollaAmTS1ItER2W1ldozOpMVuFpCwp7WJSxz81Cls5yECbyla1BSvllD2ee_vQ_RxpGMtddwxtnCyFFhZFqrSK1MOZ8kRU9iEeCafS6thkUf4BzlRWPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629124565</pqid></control><display><type>article</type><title>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jie ; Tang, Xiaohu ; Hollanti, Camilla</creator><creatorcontrib>Li, Jie ; Tang, Xiaohu ; Hollanti, Camilla</creatorcontrib><description><![CDATA[For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any <inline-formula> <tex-math notation="LaTeX">[n, k] </tex-math></inline-formula> binary MDS array code into a new one, which endows any <inline-formula> <tex-math notation="LaTeX">r=n-k\ge 2 </tex-math></inline-formula> chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.]]></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3126751</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Bandwidth ; Bandwidths ; Binary MDS array codes ; Codes ; distributed storage ; high-rate ; Linear codes ; Maintenance engineering ; Mathematics ; Nodes ; optimal rebuilding access ; optimal repair bandwidth ; Optimization ; Rebuilding ; Repair ; Systematics ; Transformations</subject><ispartof>IEEE transactions on communications, 2022-02, Vol.70 (2), p.727-738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7938-7812 ; 0000-0001-5356-8669 ; 0000-0002-7582-7630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Tang, Xiaohu</creatorcontrib><creatorcontrib>Hollanti, Camilla</creatorcontrib><title>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description><![CDATA[For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any <inline-formula> <tex-math notation="LaTeX">[n, k] </tex-math></inline-formula> binary MDS array code into a new one, which endows any <inline-formula> <tex-math notation="LaTeX">r=n-k\ge 2 </tex-math></inline-formula> chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.]]></description><subject>Arrays</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Binary MDS array codes</subject><subject>Codes</subject><subject>distributed storage</subject><subject>high-rate</subject><subject>Linear codes</subject><subject>Maintenance engineering</subject><subject>Mathematics</subject><subject>Nodes</subject><subject>optimal rebuilding access</subject><subject>optimal repair bandwidth</subject><subject>Optimization</subject><subject>Rebuilding</subject><subject>Repair</subject><subject>Systematics</subject><subject>Transformations</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj1FLwzAUhYMoOKd_QF8CPnfemzRp8jiqm-JmQedzydpbyNjamnbC_r2B-XQOnI9zOIzdI8wQwT5t8mK9ngkQOJModKbwgk1QKZOAUdklmwBYSHSWmWt2Mww7AEhBygl7n_MltRR8xTfBtUPThYMbfdfy6HjRj_7g9vyjq4l_Uu984L7l6-cvPg_BnXgeg4EXvxT4Qtyyq8btB7r71yn7Xrxs8tdkVSzf8vkq8YhmTBollaAmTS1ItER2W1ldozOpMVuFpCwp7WJSxz81Cls5yECbyla1BSvllD2ee_vQ_RxpGMtddwxtnCyFFhZFqrSK1MOZ8kRU9iEeCafS6thkUf4BzlRWPw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Li, Jie</creator><creator>Tang, Xiaohu</creator><creator>Hollanti, Camilla</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7938-7812</orcidid><orcidid>https://orcid.org/0000-0001-5356-8669</orcidid><orcidid>https://orcid.org/0000-0002-7582-7630</orcidid></search><sort><creationdate>20220201</creationdate><title>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</title><author>Li, Jie ; Tang, Xiaohu ; Hollanti, Camilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-f5352ef4490319ee9bc96d1a8488b51e59e56a19ed202d129ca07068c9cd90933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Binary MDS array codes</topic><topic>Codes</topic><topic>distributed storage</topic><topic>high-rate</topic><topic>Linear codes</topic><topic>Maintenance engineering</topic><topic>Mathematics</topic><topic>Nodes</topic><topic>optimal rebuilding access</topic><topic>optimal repair bandwidth</topic><topic>Optimization</topic><topic>Rebuilding</topic><topic>Repair</topic><topic>Systematics</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Tang, Xiaohu</creatorcontrib><creatorcontrib>Hollanti, Camilla</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jie</au><au>Tang, Xiaohu</au><au>Hollanti, Camilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>70</volume><issue>2</issue><spage>727</spage><epage>738</epage><pages>727-738</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract><![CDATA[For high-rate linear systematic maximum distance separable (MDS) codes, most early constructions could initially optimally repair all the systematic nodes but not all the parity nodes. Fortunately, this issue was first solved by Li et al. in (IEEE Trans. Inform. Theory, 64(9), 6257-6267, 2018), where a transformation that can convert any nonbinary MDS array code into another one with desired properties was proposed. However, the transformation does not work for binary MDS array codes. In this paper, we address this issue by proposing another generic transformation that can convert any <inline-formula> <tex-math notation="LaTeX">[n, k] </tex-math></inline-formula> binary MDS array code into a new one, which endows any <inline-formula> <tex-math notation="LaTeX">r=n-k\ge 2 </tex-math></inline-formula> chosen nodes with optimal repair bandwidth and optimal rebuilding access properties, and at the same time, preserves the normalized repair bandwidth/rebuilding access for the remaining <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> nodes under some conditions. As two immediate applications, we show that 1) by applying the transformation multiple times, any binary MDS array code can be converted into one with optimal rebuilding access for all nodes, 2) any binary MDS array code with optimal repair bandwidth or optimal rebuilding access for the systematic nodes can be converted into one with the corresponding optimality property for all nodes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3126751</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7938-7812</orcidid><orcidid>https://orcid.org/0000-0001-5356-8669</orcidid><orcidid>https://orcid.org/0000-0002-7582-7630</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2022-02, Vol.70 (2), p.727-738 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_2629124565 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Bandwidth Bandwidths Binary MDS array codes Codes distributed storage high-rate Linear codes Maintenance engineering Mathematics Nodes optimal rebuilding access optimal repair bandwidth Optimization Rebuilding Repair Systematics Transformations |
title | A Generic Transformation for Optimal Node Repair in MDS Array Codes Over F2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generic%20Transformation%20for%20Optimal%20Node%20Repair%20in%20MDS%20Array%20Codes%20Over%20F2&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Li,%20Jie&rft.date=2022-02-01&rft.volume=70&rft.issue=2&rft.spage=727&rft.epage=738&rft.pages=727-738&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3126751&rft_dat=%3Cproquest_RIE%3E2629124565%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629124565&rft_id=info:pmid/&rft_ieee_id=9606891&rfr_iscdi=true |