A Low-Noise CMOS SPAD Pixel With 12.1 Ps SPTR and 3 Ns Dead Time

Single-photon avalanche diodes (SPADs) have become the sensor of choice in many applications whenever high sensitivity, low noise, and sharp timing performance are required, simultaneously. Recently, SPADs designed in CMOS technology, have yielded moderately good performance in these parameters, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2022-03, Vol.28 (2: Optical Detectors), p.1-9
Hauptverfasser: Gramuglia, Francesco, Wu, Ming-Lo, Bruschini, Claudio, Lee, Myung-Jae, Charbon, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2: Optical Detectors
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 28
creator Gramuglia, Francesco
Wu, Ming-Lo
Bruschini, Claudio
Lee, Myung-Jae
Charbon, Edoardo
description Single-photon avalanche diodes (SPADs) have become the sensor of choice in many applications whenever high sensitivity, low noise, and sharp timing performance are required, simultaneously. Recently, SPADs designed in CMOS technology, have yielded moderately good performance in these parameters, but never equaling their counterparts fabricated in highly customized, non-standard technologies. The arguments in favor of CMOS-compatible SPADs were miniaturization, cost and scalability. In this paper, we present the first CMOS SPAD with performance comparable or better than that of the best custom SPADs, to date. The SPAD-based design, fully integrated in 180 nm CMOS technology, achieves a peak photon detection probability (PDP) of 55% at 480 nm with a very broad spectrum spanning from near ultraviolet (NUV) to near infrared (NIR) and a normalized dark count rate (DCR) of 0.2 cps/\mum^2, both at 6 V of excess bias. Thanks to a dedicated CMOS pixel circuit front-end, an afterpulsing probability of about 0.1% at a dead time of \sim3 ns were achieved. We designed three SPADs with a diameter of 25, 50, and 100 \mum to study the impact of size on the timing jitter and to create a scaling law for SPADs. For these SPADs, a single-photon time resolution (SPTR) of 12.1 ps, 16 ps, and 27 ps (FWHM) was achieved at 6 V of excess bias, respectively. The SPADs operate in a wide range of temperatures, from −65 ^{\circ }C to 40 ^{\circ }C, reaching a normalized DCR of 1.6 mcps/\mum^2 at 6 V of excess bias for the 25 \mum at −65 ^{\circ }C. The proposed SPADs are ideal for a wide range of applications, including (quantum) LiDAR, super-resolution microscopy, quantum random number generators, quantum key distribution, fluorescence lifetime imaging, time-resolved Raman spectroscopy, t
doi_str_mv 10.1109/JSTQE.2021.3088216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629124533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9451600</ieee_id><sourcerecordid>2629124533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-bd801176dd864b84c241959c527674d892040ab59e73307d06ff356648c98ce43</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3rZxHPrzH519yYB_AoCSo3eNqW7jSVAoQtR_71FiKd5M3mfmeQh5BIhRgRz8zRJX_oxA4YxB60ZqiPSQil1JKRgx02GJImYgo9TchbCDAC00NAitx06qL6iYVUGT7vPowmdjDs9Oi6__Zy-l5tPiixGOg7NPn2l2dJRToeB9nzmaFou_Dk5KbJ58BeH2SZvd_20-xANRveP3c4gyrnWm2jqNCAmyjmtxFSLnAk00uSSJSoRThsGArKpND7hHBIHqii4VEro3OjcC94m1_u7q7pab33Y2Fm1rZfNS8sUM8iE5LxpsX0rr6sQal_YVV0usvrHItidKftnyu5M2YOpBrraQ6X3_h8wQqIC4L_o9142</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629124533</pqid></control><display><type>article</type><title>A Low-Noise CMOS SPAD Pixel With 12.1 Ps SPTR and 3 Ns Dead Time</title><source>IEEE Electronic Library (IEL)</source><creator>Gramuglia, Francesco ; Wu, Ming-Lo ; Bruschini, Claudio ; Lee, Myung-Jae ; Charbon, Edoardo</creator><creatorcontrib>Gramuglia, Francesco ; Wu, Ming-Lo ; Bruschini, Claudio ; Lee, Myung-Jae ; Charbon, Edoardo</creatorcontrib><description><![CDATA[Single-photon avalanche diodes (SPADs) have become the sensor of choice in many applications whenever high sensitivity, low noise, and sharp timing performance are required, simultaneously. Recently, SPADs designed in CMOS technology, have yielded moderately good performance in these parameters, but never equaling their counterparts fabricated in highly customized, non-standard technologies. The arguments in favor of CMOS-compatible SPADs were miniaturization, cost and scalability. In this paper, we present the first CMOS SPAD with performance comparable or better than that of the best custom SPADs, to date. The SPAD-based design, fully integrated in 180 nm CMOS technology, achieves a peak photon detection probability (PDP) of 55% at 480 nm with a very broad spectrum spanning from near ultraviolet (NUV) to near infrared (NIR) and a normalized dark count rate (DCR) of 0.2 cps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>, both at 6 V of excess bias. Thanks to a dedicated CMOS pixel circuit front-end, an afterpulsing probability of about 0.1% at a dead time of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>3 ns were achieved. We designed three SPADs with a diameter of 25, 50, and 100 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m to study the impact of size on the timing jitter and to create a scaling law for SPADs. For these SPADs, a single-photon time resolution (SPTR) of 12.1 ps, 16 ps, and 27 ps (FWHM) was achieved at 6 V of excess bias, respectively. The SPADs operate in a wide range of temperatures, from −65 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C to 40 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C, reaching a normalized DCR of 1.6 mcps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> at 6 V of excess bias for the 25 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m at −65 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C. The proposed SPADs are ideal for a wide range of applications, including (quantum) LiDAR, super-resolution microscopy, quantum random number generators, quantum key distribution, fluorescence lifetime imaging, time-resolved Raman spectroscopy, to name a few. All these applications can take advantage of the vastly improved performance of our detectors, while enjoying the opportunities of megapixel resolutions promised by the economy of scale that is offered by CMOS technologies.]]></description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2021.3088216</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active reset ; Avalanche diodes ; Bias ; cascode ; CMOS ; CMOS technology ; Delays ; Economies of scale ; Fluorescence ; jitter ; Low noise ; low power ; Miniaturization ; Noise sensitivity ; Photon avalanches ; photon detection probability (PDP) ; Photons ; pixel ; Pixels ; Quantum cryptography ; quantum key distribution (QKD) ; Raman spectroscopy ; Random numbers ; Scaling laws ; Sensitivity ; single-photon avalanche diode (SPAD) ; Single-photon avalanche diodes ; Temperature measurement ; timing ; Timing jitter ; Transistors ; Vibration ; Voltage measurement</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2022-03, Vol.28 (2: Optical Detectors), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-bd801176dd864b84c241959c527674d892040ab59e73307d06ff356648c98ce43</citedby><cites>FETCH-LOGICAL-c388t-bd801176dd864b84c241959c527674d892040ab59e73307d06ff356648c98ce43</cites><orcidid>0000-0001-9080-0914 ; 0000-0002-0620-3365 ; 0000-0002-6636-6596 ; 0000-0001-8198-1901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9451600$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Gramuglia, Francesco</creatorcontrib><creatorcontrib>Wu, Ming-Lo</creatorcontrib><creatorcontrib>Bruschini, Claudio</creatorcontrib><creatorcontrib>Lee, Myung-Jae</creatorcontrib><creatorcontrib>Charbon, Edoardo</creatorcontrib><title>A Low-Noise CMOS SPAD Pixel With 12.1 Ps SPTR and 3 Ns Dead Time</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description><![CDATA[Single-photon avalanche diodes (SPADs) have become the sensor of choice in many applications whenever high sensitivity, low noise, and sharp timing performance are required, simultaneously. Recently, SPADs designed in CMOS technology, have yielded moderately good performance in these parameters, but never equaling their counterparts fabricated in highly customized, non-standard technologies. The arguments in favor of CMOS-compatible SPADs were miniaturization, cost and scalability. In this paper, we present the first CMOS SPAD with performance comparable or better than that of the best custom SPADs, to date. The SPAD-based design, fully integrated in 180 nm CMOS technology, achieves a peak photon detection probability (PDP) of 55% at 480 nm with a very broad spectrum spanning from near ultraviolet (NUV) to near infrared (NIR) and a normalized dark count rate (DCR) of 0.2 cps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>, both at 6 V of excess bias. Thanks to a dedicated CMOS pixel circuit front-end, an afterpulsing probability of about 0.1% at a dead time of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>3 ns were achieved. We designed three SPADs with a diameter of 25, 50, and 100 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m to study the impact of size on the timing jitter and to create a scaling law for SPADs. For these SPADs, a single-photon time resolution (SPTR) of 12.1 ps, 16 ps, and 27 ps (FWHM) was achieved at 6 V of excess bias, respectively. The SPADs operate in a wide range of temperatures, from −65 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C to 40 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C, reaching a normalized DCR of 1.6 mcps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> at 6 V of excess bias for the 25 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m at −65 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C. The proposed SPADs are ideal for a wide range of applications, including (quantum) LiDAR, super-resolution microscopy, quantum random number generators, quantum key distribution, fluorescence lifetime imaging, time-resolved Raman spectroscopy, to name a few. All these applications can take advantage of the vastly improved performance of our detectors, while enjoying the opportunities of megapixel resolutions promised by the economy of scale that is offered by CMOS technologies.]]></description><subject>Active reset</subject><subject>Avalanche diodes</subject><subject>Bias</subject><subject>cascode</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Delays</subject><subject>Economies of scale</subject><subject>Fluorescence</subject><subject>jitter</subject><subject>Low noise</subject><subject>low power</subject><subject>Miniaturization</subject><subject>Noise sensitivity</subject><subject>Photon avalanches</subject><subject>photon detection probability (PDP)</subject><subject>Photons</subject><subject>pixel</subject><subject>Pixels</subject><subject>Quantum cryptography</subject><subject>quantum key distribution (QKD)</subject><subject>Raman spectroscopy</subject><subject>Random numbers</subject><subject>Scaling laws</subject><subject>Sensitivity</subject><subject>single-photon avalanche diode (SPAD)</subject><subject>Single-photon avalanche diodes</subject><subject>Temperature measurement</subject><subject>timing</subject><subject>Timing jitter</subject><subject>Transistors</subject><subject>Vibration</subject><subject>Voltage measurement</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A3rZxHPrzH519yYB_AoCSo3eNqW7jSVAoQtR_71FiKd5M3mfmeQh5BIhRgRz8zRJX_oxA4YxB60ZqiPSQil1JKRgx02GJImYgo9TchbCDAC00NAitx06qL6iYVUGT7vPowmdjDs9Oi6__Zy-l5tPiixGOg7NPn2l2dJRToeB9nzmaFou_Dk5KbJ58BeH2SZvd_20-xANRveP3c4gyrnWm2jqNCAmyjmtxFSLnAk00uSSJSoRThsGArKpND7hHBIHqii4VEro3OjcC94m1_u7q7pab33Y2Fm1rZfNS8sUM8iE5LxpsX0rr6sQal_YVV0usvrHItidKftnyu5M2YOpBrraQ6X3_h8wQqIC4L_o9142</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gramuglia, Francesco</creator><creator>Wu, Ming-Lo</creator><creator>Bruschini, Claudio</creator><creator>Lee, Myung-Jae</creator><creator>Charbon, Edoardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9080-0914</orcidid><orcidid>https://orcid.org/0000-0002-0620-3365</orcidid><orcidid>https://orcid.org/0000-0002-6636-6596</orcidid><orcidid>https://orcid.org/0000-0001-8198-1901</orcidid></search><sort><creationdate>20220301</creationdate><title>A Low-Noise CMOS SPAD Pixel With 12.1 Ps SPTR and 3 Ns Dead Time</title><author>Gramuglia, Francesco ; Wu, Ming-Lo ; Bruschini, Claudio ; Lee, Myung-Jae ; Charbon, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-bd801176dd864b84c241959c527674d892040ab59e73307d06ff356648c98ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active reset</topic><topic>Avalanche diodes</topic><topic>Bias</topic><topic>cascode</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Delays</topic><topic>Economies of scale</topic><topic>Fluorescence</topic><topic>jitter</topic><topic>Low noise</topic><topic>low power</topic><topic>Miniaturization</topic><topic>Noise sensitivity</topic><topic>Photon avalanches</topic><topic>photon detection probability (PDP)</topic><topic>Photons</topic><topic>pixel</topic><topic>Pixels</topic><topic>Quantum cryptography</topic><topic>quantum key distribution (QKD)</topic><topic>Raman spectroscopy</topic><topic>Random numbers</topic><topic>Scaling laws</topic><topic>Sensitivity</topic><topic>single-photon avalanche diode (SPAD)</topic><topic>Single-photon avalanche diodes</topic><topic>Temperature measurement</topic><topic>timing</topic><topic>Timing jitter</topic><topic>Transistors</topic><topic>Vibration</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramuglia, Francesco</creatorcontrib><creatorcontrib>Wu, Ming-Lo</creatorcontrib><creatorcontrib>Bruschini, Claudio</creatorcontrib><creatorcontrib>Lee, Myung-Jae</creatorcontrib><creatorcontrib>Charbon, Edoardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramuglia, Francesco</au><au>Wu, Ming-Lo</au><au>Bruschini, Claudio</au><au>Lee, Myung-Jae</au><au>Charbon, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Noise CMOS SPAD Pixel With 12.1 Ps SPTR and 3 Ns Dead Time</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>28</volume><issue>2: Optical Detectors</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract><![CDATA[Single-photon avalanche diodes (SPADs) have become the sensor of choice in many applications whenever high sensitivity, low noise, and sharp timing performance are required, simultaneously. Recently, SPADs designed in CMOS technology, have yielded moderately good performance in these parameters, but never equaling their counterparts fabricated in highly customized, non-standard technologies. The arguments in favor of CMOS-compatible SPADs were miniaturization, cost and scalability. In this paper, we present the first CMOS SPAD with performance comparable or better than that of the best custom SPADs, to date. The SPAD-based design, fully integrated in 180 nm CMOS technology, achieves a peak photon detection probability (PDP) of 55% at 480 nm with a very broad spectrum spanning from near ultraviolet (NUV) to near infrared (NIR) and a normalized dark count rate (DCR) of 0.2 cps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>, both at 6 V of excess bias. Thanks to a dedicated CMOS pixel circuit front-end, an afterpulsing probability of about 0.1% at a dead time of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>3 ns were achieved. We designed three SPADs with a diameter of 25, 50, and 100 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m to study the impact of size on the timing jitter and to create a scaling law for SPADs. For these SPADs, a single-photon time resolution (SPTR) of 12.1 ps, 16 ps, and 27 ps (FWHM) was achieved at 6 V of excess bias, respectively. The SPADs operate in a wide range of temperatures, from −65 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C to 40 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C, reaching a normalized DCR of 1.6 mcps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> at 6 V of excess bias for the 25 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m at −65 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C. The proposed SPADs are ideal for a wide range of applications, including (quantum) LiDAR, super-resolution microscopy, quantum random number generators, quantum key distribution, fluorescence lifetime imaging, time-resolved Raman spectroscopy, to name a few. All these applications can take advantage of the vastly improved performance of our detectors, while enjoying the opportunities of megapixel resolutions promised by the economy of scale that is offered by CMOS technologies.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2021.3088216</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9080-0914</orcidid><orcidid>https://orcid.org/0000-0002-0620-3365</orcidid><orcidid>https://orcid.org/0000-0002-6636-6596</orcidid><orcidid>https://orcid.org/0000-0001-8198-1901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2022-03, Vol.28 (2: Optical Detectors), p.1-9
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_journals_2629124533
source IEEE Electronic Library (IEL)
subjects Active reset
Avalanche diodes
Bias
cascode
CMOS
CMOS technology
Delays
Economies of scale
Fluorescence
jitter
Low noise
low power
Miniaturization
Noise sensitivity
Photon avalanches
photon detection probability (PDP)
Photons
pixel
Pixels
Quantum cryptography
quantum key distribution (QKD)
Raman spectroscopy
Random numbers
Scaling laws
Sensitivity
single-photon avalanche diode (SPAD)
Single-photon avalanche diodes
Temperature measurement
timing
Timing jitter
Transistors
Vibration
Voltage measurement
title A Low-Noise CMOS SPAD Pixel With 12.1 Ps SPTR and 3 Ns Dead Time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Noise%20CMOS%20SPAD%20Pixel%20With%2012.1%20Ps%20SPTR%20and%203%20Ns%20Dead%20Time&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Gramuglia,%20Francesco&rft.date=2022-03-01&rft.volume=28&rft.issue=2:%20Optical%20Detectors&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2021.3088216&rft_dat=%3Cproquest_cross%3E2629124533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629124533&rft_id=info:pmid/&rft_ieee_id=9451600&rfr_iscdi=true