Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes
Protonic ceramic electrochemical cells (including fuel cells (PCFCs) and electrolysis cells (PCECs)) are positioned as an eco-friendly means for realizing energy/chemical conversion at low (below 500 °C) and intermediate (500-800 °C) temperatures; as a result, R&D of PCFCs and PCECs are compatib...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-02, Vol.15 (2), p.439-465 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 2 |
container_start_page | 439 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Zvonareva, Inna Fu, Xian-Zhu Medvedev, Dmitry Shao, Zongping |
description | Protonic ceramic electrochemical cells (including fuel cells (PCFCs) and electrolysis cells (PCECs)) are positioned as an eco-friendly means for realizing energy/chemical conversion at low (below 500 °C) and intermediate (500-800 °C) temperatures; as a result, R&D of PCFCs and PCECs are compatible with hydrogen energy and CO
2
utilization programs that play an increasing role in global environmental practice. However, along with ionic transport, the majority of proton-conducting ceramic materials also exhibit electronic transport under oxidizing conditions and elevated temperatures. This feature negatively affects the performance of cells due to the short-circuit effect leading to a reduction in faradaic and energy efficiencies. In response, in order to achieve a compromise between high performance and high efficiency, the present review article aims at revealing the main factors contributing to undesirable electronic transport of materials used in PCFCs and PCECs, as well as possible solutions leading to its suppression for improving their efficiency.
The current review highlights features of electron transport in proton-conducting electrolytes and possible ways of its eliminating to increase performance and efficiency of the related protonic ceramic electrochemical cells. |
doi_str_mv | 10.1039/d1ee03109k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629117340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629117340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-171d7cf949a0a4dcd3dbf98c911fb2b035a1bea33d89c253a25326e85e4313b13</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqVw4Y5kiRtSwI886iMq4SEqcYFz5Nhr6pLExXaB_HtSUuCwmpH20-xqEDql5JISLq40BSCcEvG2hya0yNIkK0i-_-tzwQ7RUQgrQnJGCjFBvmxARe_UElobou-x7DSGDvxrj5XrPsAH6zpsQMaNh4CdwWvvouuswgq8bH-0aQL-tHGJW_sFGtvtOoExekvubNNHCMfowMgmwMlOp-jltnye3yeLp7uH-fUiUZyxmNCC6kIZkQpJZKqV5ro2YqYEpaZmNeGZpDVIzvVMKJZxOQzLYZZByimvKZ-i8zF3-Pd9AyFWK7fx3XCyYjkbYgqekoG6GCnlXQgeTLX2tpW-ryiptp1WN7Qsfzp9HOCzEfZB_XH_nfNvypx1_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629117340</pqid></control><display><type>article</type><title>Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zvonareva, Inna ; Fu, Xian-Zhu ; Medvedev, Dmitry ; Shao, Zongping</creator><creatorcontrib>Zvonareva, Inna ; Fu, Xian-Zhu ; Medvedev, Dmitry ; Shao, Zongping</creatorcontrib><description>Protonic ceramic electrochemical cells (including fuel cells (PCFCs) and electrolysis cells (PCECs)) are positioned as an eco-friendly means for realizing energy/chemical conversion at low (below 500 °C) and intermediate (500-800 °C) temperatures; as a result, R&D of PCFCs and PCECs are compatible with hydrogen energy and CO
2
utilization programs that play an increasing role in global environmental practice. However, along with ionic transport, the majority of proton-conducting ceramic materials also exhibit electronic transport under oxidizing conditions and elevated temperatures. This feature negatively affects the performance of cells due to the short-circuit effect leading to a reduction in faradaic and energy efficiencies. In response, in order to achieve a compromise between high performance and high efficiency, the present review article aims at revealing the main factors contributing to undesirable electronic transport of materials used in PCFCs and PCECs, as well as possible solutions leading to its suppression for improving their efficiency.
The current review highlights features of electron transport in proton-conducting electrolytes and possible ways of its eliminating to increase performance and efficiency of the related protonic ceramic electrochemical cells.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee03109k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Ceramics ; Electrochemical cells ; Electrochemistry ; Electrolysis ; Electrolytes ; Electrolytic cells ; Electron transport ; Energy conversion ; Fuel cells ; Fuel technology ; High temperature ; Hydrogen-based energy ; Oxidation ; Short circuits</subject><ispartof>Energy & environmental science, 2022-02, Vol.15 (2), p.439-465</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-171d7cf949a0a4dcd3dbf98c911fb2b035a1bea33d89c253a25326e85e4313b13</citedby><cites>FETCH-LOGICAL-c322t-171d7cf949a0a4dcd3dbf98c911fb2b035a1bea33d89c253a25326e85e4313b13</cites><orcidid>0000-0003-1660-6712 ; 0000-0003-1843-8927 ; 0000-0002-4538-4218 ; 0000-0002-9793-1375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zvonareva, Inna</creatorcontrib><creatorcontrib>Fu, Xian-Zhu</creatorcontrib><creatorcontrib>Medvedev, Dmitry</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes</title><title>Energy & environmental science</title><description>Protonic ceramic electrochemical cells (including fuel cells (PCFCs) and electrolysis cells (PCECs)) are positioned as an eco-friendly means for realizing energy/chemical conversion at low (below 500 °C) and intermediate (500-800 °C) temperatures; as a result, R&D of PCFCs and PCECs are compatible with hydrogen energy and CO
2
utilization programs that play an increasing role in global environmental practice. However, along with ionic transport, the majority of proton-conducting ceramic materials also exhibit electronic transport under oxidizing conditions and elevated temperatures. This feature negatively affects the performance of cells due to the short-circuit effect leading to a reduction in faradaic and energy efficiencies. In response, in order to achieve a compromise between high performance and high efficiency, the present review article aims at revealing the main factors contributing to undesirable electronic transport of materials used in PCFCs and PCECs, as well as possible solutions leading to its suppression for improving their efficiency.
The current review highlights features of electron transport in proton-conducting electrolytes and possible ways of its eliminating to increase performance and efficiency of the related protonic ceramic electrochemical cells.</description><subject>Carbon dioxide</subject><subject>Ceramics</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electron transport</subject><subject>Energy conversion</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>High temperature</subject><subject>Hydrogen-based energy</subject><subject>Oxidation</subject><subject>Short circuits</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqVw4Y5kiRtSwI886iMq4SEqcYFz5Nhr6pLExXaB_HtSUuCwmpH20-xqEDql5JISLq40BSCcEvG2hya0yNIkK0i-_-tzwQ7RUQgrQnJGCjFBvmxARe_UElobou-x7DSGDvxrj5XrPsAH6zpsQMaNh4CdwWvvouuswgq8bH-0aQL-tHGJW_sFGtvtOoExekvubNNHCMfowMgmwMlOp-jltnye3yeLp7uH-fUiUZyxmNCC6kIZkQpJZKqV5ro2YqYEpaZmNeGZpDVIzvVMKJZxOQzLYZZByimvKZ-i8zF3-Pd9AyFWK7fx3XCyYjkbYgqekoG6GCnlXQgeTLX2tpW-ryiptp1WN7Qsfzp9HOCzEfZB_XH_nfNvypx1_w</recordid><startdate>20220216</startdate><enddate>20220216</enddate><creator>Zvonareva, Inna</creator><creator>Fu, Xian-Zhu</creator><creator>Medvedev, Dmitry</creator><creator>Shao, Zongping</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid><orcidid>https://orcid.org/0000-0002-4538-4218</orcidid><orcidid>https://orcid.org/0000-0002-9793-1375</orcidid></search><sort><creationdate>20220216</creationdate><title>Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes</title><author>Zvonareva, Inna ; Fu, Xian-Zhu ; Medvedev, Dmitry ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-171d7cf949a0a4dcd3dbf98c911fb2b035a1bea33d89c253a25326e85e4313b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Ceramics</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electron transport</topic><topic>Energy conversion</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>High temperature</topic><topic>Hydrogen-based energy</topic><topic>Oxidation</topic><topic>Short circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zvonareva, Inna</creatorcontrib><creatorcontrib>Fu, Xian-Zhu</creatorcontrib><creatorcontrib>Medvedev, Dmitry</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zvonareva, Inna</au><au>Fu, Xian-Zhu</au><au>Medvedev, Dmitry</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes</atitle><jtitle>Energy & environmental science</jtitle><date>2022-02-16</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>439</spage><epage>465</epage><pages>439-465</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Protonic ceramic electrochemical cells (including fuel cells (PCFCs) and electrolysis cells (PCECs)) are positioned as an eco-friendly means for realizing energy/chemical conversion at low (below 500 °C) and intermediate (500-800 °C) temperatures; as a result, R&D of PCFCs and PCECs are compatible with hydrogen energy and CO
2
utilization programs that play an increasing role in global environmental practice. However, along with ionic transport, the majority of proton-conducting ceramic materials also exhibit electronic transport under oxidizing conditions and elevated temperatures. This feature negatively affects the performance of cells due to the short-circuit effect leading to a reduction in faradaic and energy efficiencies. In response, in order to achieve a compromise between high performance and high efficiency, the present review article aims at revealing the main factors contributing to undesirable electronic transport of materials used in PCFCs and PCECs, as well as possible solutions leading to its suppression for improving their efficiency.
The current review highlights features of electron transport in proton-conducting electrolytes and possible ways of its eliminating to increase performance and efficiency of the related protonic ceramic electrochemical cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee03109k</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid><orcidid>https://orcid.org/0000-0002-4538-4218</orcidid><orcidid>https://orcid.org/0000-0002-9793-1375</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-02, Vol.15 (2), p.439-465 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2629117340 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon dioxide Ceramics Electrochemical cells Electrochemistry Electrolysis Electrolytes Electrolytic cells Electron transport Energy conversion Fuel cells Fuel technology High temperature Hydrogen-based energy Oxidation Short circuits |
title | Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemistry%20and%20energy%20conversion%20features%20of%20protonic%20ceramic%20cells%20with%20mixed%20ionic-electronic%20electrolytes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zvonareva,%20Inna&rft.date=2022-02-16&rft.volume=15&rft.issue=2&rft.spage=439&rft.epage=465&rft.pages=439-465&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee03109k&rft_dat=%3Cproquest_cross%3E2629117340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629117340&rft_id=info:pmid/&rfr_iscdi=true |