Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications

Adsorption cooling is a sustainable technology, since it can utilize solar energy or waste heat, while employing substances without ozone depletion and global warming potential. The adsorption reactor design is determinant for the system performance. An underexplored geometry hitherto – the hexagona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2022-02, Vol.202, p.117807, Article 117807
Hauptverfasser: Papakokkinos, Giorgos, Castro, Jesús, Oliet, Carles, Oliva, Assensi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117807
container_title Applied thermal engineering
container_volume 202
creator Papakokkinos, Giorgos
Castro, Jesús
Oliet, Carles
Oliva, Assensi
description Adsorption cooling is a sustainable technology, since it can utilize solar energy or waste heat, while employing substances without ozone depletion and global warming potential. The adsorption reactor design is determinant for the system performance. An underexplored geometry hitherto – the hexagonal honeycomb adsorption reactor – was numerically investigated. An in-house, validated, three-dimensional computational model based on unstructured meshes was employed. The Specific Cooling Power (SCP) and Coefficient of Performance (COP) were quantified for several geometrical and operational parameters. The cell inradius creates a dichotomy between SCP and COP, being 218.9W/kg˙s and 0.356 for 1mm, while being 80.4W/kg˙s and 0.606 for 6mm. The cell height influences prominently the SCP, being 159.5W/kg˙s and 86.1W/kg˙s for 5mm and 30mm, respectively. The fin thickness impacts mostly the COP, being 0.599 and 0.364 for 0.5mm and 3mm, respectively. Higher COP is achieved for higher evaporator, lower adsorption and lower condenser temperatures. Higher SCP is achieved for lower adsorption and condenser, and higher evaporator and desorption temperatures. Shorter cycles result in high SCP and low COP, whereas the inverse occurs for longer cycles. Aluminum heat exchanger yields 7.7% higher COP than copper. The results are discussed from a physical, as well as, an engineering perspective. •Hexagonal honeycomb reactor studied in the context of adsorption cooling.•Quantification of COP and SCP under various geometrical and operational parameters.•Geometrical and operational parameters are determinant for the reactor performance.•Adaptive cycle duration is highly useful for the regulation of system performance.•Aluminum heat exchanger yields 7.7% higher COP than copper.
doi_str_mv 10.1016/j.applthermaleng.2021.117807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629085550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943112101231X</els_id><sourcerecordid>2629085550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-349854e5ea6dc0abd5cddd4b5ea43c6cb44f9bb16badb1f351a40676879652243</originalsourceid><addsrcrecordid>eNqNUMtKxDAUDaLgOPoPBd22JmmStuBGBl8w4EbXIa92UtqmJp3B-XszrRt3Li73dc7h3gPAHYIZgojdt5kYx27aGd-LzgxNhiFGGUJFCYszsEJlkaeUQXYe65xWKckRugRXIbQQIlwWZAXkxvXjfhKTdYPoEjscTJhsM_eJq5MonuzMt2jm9c4N5qhcLxOhg_PjjPJGqMn5pI6hnOvs0CSnu6yaVcI1uKhFF8zNb16Dz-enj81run1_eds8blOVEzylOalKSgw1gmkFhdRUaa2JjAOSK6YkIXUlJWJSaInqnCJBICtYWVSMYkzyNbhddEfvvvbxDd66vY9nB44ZrmBJKYUR9bCglHcheFPz0dte-CNHkJ9c5S3_6yo_ucoXVyP9eaGb-MnBGs-DsmZQRltv1MS1s_8T-gE8A4w7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629085550</pqid></control><display><type>article</type><title>Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Papakokkinos, Giorgos ; Castro, Jesús ; Oliet, Carles ; Oliva, Assensi</creator><creatorcontrib>Papakokkinos, Giorgos ; Castro, Jesús ; Oliet, Carles ; Oliva, Assensi</creatorcontrib><description>Adsorption cooling is a sustainable technology, since it can utilize solar energy or waste heat, while employing substances without ozone depletion and global warming potential. The adsorption reactor design is determinant for the system performance. An underexplored geometry hitherto – the hexagonal honeycomb adsorption reactor – was numerically investigated. An in-house, validated, three-dimensional computational model based on unstructured meshes was employed. The Specific Cooling Power (SCP) and Coefficient of Performance (COP) were quantified for several geometrical and operational parameters. The cell inradius creates a dichotomy between SCP and COP, being 218.9W/kg˙s and 0.356 for 1mm, while being 80.4W/kg˙s and 0.606 for 6mm. The cell height influences prominently the SCP, being 159.5W/kg˙s and 86.1W/kg˙s for 5mm and 30mm, respectively. The fin thickness impacts mostly the COP, being 0.599 and 0.364 for 0.5mm and 3mm, respectively. Higher COP is achieved for higher evaporator, lower adsorption and lower condenser temperatures. Higher SCP is achieved for lower adsorption and condenser, and higher evaporator and desorption temperatures. Shorter cycles result in high SCP and low COP, whereas the inverse occurs for longer cycles. Aluminum heat exchanger yields 7.7% higher COP than copper. The results are discussed from a physical, as well as, an engineering perspective. •Hexagonal honeycomb reactor studied in the context of adsorption cooling.•Quantification of COP and SCP under various geometrical and operational parameters.•Geometrical and operational parameters are determinant for the reactor performance.•Adaptive cycle duration is highly useful for the regulation of system performance.•Aluminum heat exchanger yields 7.7% higher COP than copper.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2021.117807</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Adsorption cooling ; Adsorption packed bed reactor ; Aluminum ; Condensers ; Cooling ; Evaporators ; Heat exchangers ; Heat transfer ; Hexagonal honeycomb reactor ; Numerical simulation ; Ozone depletion ; Reactor design ; Solar energy ; Studies ; Three dimensional models</subject><ispartof>Applied thermal engineering, 2022-02, Vol.202, p.117807, Article 117807</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 5, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-349854e5ea6dc0abd5cddd4b5ea43c6cb44f9bb16badb1f351a40676879652243</citedby><cites>FETCH-LOGICAL-c342t-349854e5ea6dc0abd5cddd4b5ea43c6cb44f9bb16badb1f351a40676879652243</cites><orcidid>0000-0002-8943-2402 ; 0000-0003-2170-5299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2021.117807$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Papakokkinos, Giorgos</creatorcontrib><creatorcontrib>Castro, Jesús</creatorcontrib><creatorcontrib>Oliet, Carles</creatorcontrib><creatorcontrib>Oliva, Assensi</creatorcontrib><title>Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications</title><title>Applied thermal engineering</title><description>Adsorption cooling is a sustainable technology, since it can utilize solar energy or waste heat, while employing substances without ozone depletion and global warming potential. The adsorption reactor design is determinant for the system performance. An underexplored geometry hitherto – the hexagonal honeycomb adsorption reactor – was numerically investigated. An in-house, validated, three-dimensional computational model based on unstructured meshes was employed. The Specific Cooling Power (SCP) and Coefficient of Performance (COP) were quantified for several geometrical and operational parameters. The cell inradius creates a dichotomy between SCP and COP, being 218.9W/kg˙s and 0.356 for 1mm, while being 80.4W/kg˙s and 0.606 for 6mm. The cell height influences prominently the SCP, being 159.5W/kg˙s and 86.1W/kg˙s for 5mm and 30mm, respectively. The fin thickness impacts mostly the COP, being 0.599 and 0.364 for 0.5mm and 3mm, respectively. Higher COP is achieved for higher evaporator, lower adsorption and lower condenser temperatures. Higher SCP is achieved for lower adsorption and condenser, and higher evaporator and desorption temperatures. Shorter cycles result in high SCP and low COP, whereas the inverse occurs for longer cycles. Aluminum heat exchanger yields 7.7% higher COP than copper. The results are discussed from a physical, as well as, an engineering perspective. •Hexagonal honeycomb reactor studied in the context of adsorption cooling.•Quantification of COP and SCP under various geometrical and operational parameters.•Geometrical and operational parameters are determinant for the reactor performance.•Adaptive cycle duration is highly useful for the regulation of system performance.•Aluminum heat exchanger yields 7.7% higher COP than copper.</description><subject>Adsorption</subject><subject>Adsorption cooling</subject><subject>Adsorption packed bed reactor</subject><subject>Aluminum</subject><subject>Condensers</subject><subject>Cooling</subject><subject>Evaporators</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Hexagonal honeycomb reactor</subject><subject>Numerical simulation</subject><subject>Ozone depletion</subject><subject>Reactor design</subject><subject>Solar energy</subject><subject>Studies</subject><subject>Three dimensional models</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKxDAUDaLgOPoPBd22JmmStuBGBl8w4EbXIa92UtqmJp3B-XszrRt3Li73dc7h3gPAHYIZgojdt5kYx27aGd-LzgxNhiFGGUJFCYszsEJlkaeUQXYe65xWKckRugRXIbQQIlwWZAXkxvXjfhKTdYPoEjscTJhsM_eJq5MonuzMt2jm9c4N5qhcLxOhg_PjjPJGqMn5pI6hnOvs0CSnu6yaVcI1uKhFF8zNb16Dz-enj81run1_eds8blOVEzylOalKSgw1gmkFhdRUaa2JjAOSK6YkIXUlJWJSaInqnCJBICtYWVSMYkzyNbhddEfvvvbxDd66vY9nB44ZrmBJKYUR9bCglHcheFPz0dte-CNHkJ9c5S3_6yo_ucoXVyP9eaGb-MnBGs-DsmZQRltv1MS1s_8T-gE8A4w7</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Papakokkinos, Giorgos</creator><creator>Castro, Jesús</creator><creator>Oliet, Carles</creator><creator>Oliva, Assensi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8943-2402</orcidid><orcidid>https://orcid.org/0000-0003-2170-5299</orcidid></search><sort><creationdate>20220205</creationdate><title>Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications</title><author>Papakokkinos, Giorgos ; Castro, Jesús ; Oliet, Carles ; Oliva, Assensi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-349854e5ea6dc0abd5cddd4b5ea43c6cb44f9bb16badb1f351a40676879652243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Adsorption cooling</topic><topic>Adsorption packed bed reactor</topic><topic>Aluminum</topic><topic>Condensers</topic><topic>Cooling</topic><topic>Evaporators</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Hexagonal honeycomb reactor</topic><topic>Numerical simulation</topic><topic>Ozone depletion</topic><topic>Reactor design</topic><topic>Solar energy</topic><topic>Studies</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papakokkinos, Giorgos</creatorcontrib><creatorcontrib>Castro, Jesús</creatorcontrib><creatorcontrib>Oliet, Carles</creatorcontrib><creatorcontrib>Oliva, Assensi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papakokkinos, Giorgos</au><au>Castro, Jesús</au><au>Oliet, Carles</au><au>Oliva, Assensi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications</atitle><jtitle>Applied thermal engineering</jtitle><date>2022-02-05</date><risdate>2022</risdate><volume>202</volume><spage>117807</spage><pages>117807-</pages><artnum>117807</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>Adsorption cooling is a sustainable technology, since it can utilize solar energy or waste heat, while employing substances without ozone depletion and global warming potential. The adsorption reactor design is determinant for the system performance. An underexplored geometry hitherto – the hexagonal honeycomb adsorption reactor – was numerically investigated. An in-house, validated, three-dimensional computational model based on unstructured meshes was employed. The Specific Cooling Power (SCP) and Coefficient of Performance (COP) were quantified for several geometrical and operational parameters. The cell inradius creates a dichotomy between SCP and COP, being 218.9W/kg˙s and 0.356 for 1mm, while being 80.4W/kg˙s and 0.606 for 6mm. The cell height influences prominently the SCP, being 159.5W/kg˙s and 86.1W/kg˙s for 5mm and 30mm, respectively. The fin thickness impacts mostly the COP, being 0.599 and 0.364 for 0.5mm and 3mm, respectively. Higher COP is achieved for higher evaporator, lower adsorption and lower condenser temperatures. Higher SCP is achieved for lower adsorption and condenser, and higher evaporator and desorption temperatures. Shorter cycles result in high SCP and low COP, whereas the inverse occurs for longer cycles. Aluminum heat exchanger yields 7.7% higher COP than copper. The results are discussed from a physical, as well as, an engineering perspective. •Hexagonal honeycomb reactor studied in the context of adsorption cooling.•Quantification of COP and SCP under various geometrical and operational parameters.•Geometrical and operational parameters are determinant for the reactor performance.•Adaptive cycle duration is highly useful for the regulation of system performance.•Aluminum heat exchanger yields 7.7% higher COP than copper.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2021.117807</doi><orcidid>https://orcid.org/0000-0002-8943-2402</orcidid><orcidid>https://orcid.org/0000-0003-2170-5299</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2022-02, Vol.202, p.117807, Article 117807
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2629085550
source ScienceDirect Journals (5 years ago - present)
subjects Adsorption
Adsorption cooling
Adsorption packed bed reactor
Aluminum
Condensers
Cooling
Evaporators
Heat exchangers
Heat transfer
Hexagonal honeycomb reactor
Numerical simulation
Ozone depletion
Reactor design
Solar energy
Studies
Three dimensional models
title Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20investigation%20of%20the%20hexagonal%20honeycomb%20adsorption%20reactor%20for%20cooling%20applications&rft.jtitle=Applied%20thermal%20engineering&rft.au=Papakokkinos,%20Giorgos&rft.date=2022-02-05&rft.volume=202&rft.spage=117807&rft.pages=117807-&rft.artnum=117807&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2021.117807&rft_dat=%3Cproquest_cross%3E2629085550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629085550&rft_id=info:pmid/&rft_els_id=S135943112101231X&rfr_iscdi=true