Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments

Molten salts are potential energy storage media for solar thermal power, but can be highly corrosive. To investigate molten salt corrosion mechanisms, the oxidation state and structure of SS316L exposed to salt in air and argon environments was investigated using SEM and XANES techniques. It was det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2022-02, Vol.195, p.109966, Article 109966
Hauptverfasser: Bell, S., Jones, M.W.M., Graham, E., Peterson, D.J., van Riessen, G.A., Hinsley, G., Steinberg, T., Will, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109966
container_title Corrosion science
container_volume 195
creator Bell, S.
Jones, M.W.M.
Graham, E.
Peterson, D.J.
van Riessen, G.A.
Hinsley, G.
Steinberg, T.
Will, G.
description Molten salts are potential energy storage media for solar thermal power, but can be highly corrosive. To investigate molten salt corrosion mechanisms, the oxidation state and structure of SS316L exposed to salt in air and argon environments was investigated using SEM and XANES techniques. It was determined that iron formed mixed Fe2+ and Fe3+ states in both environments, with lower oxidation states deeper into the corrosion. Cr2+ was the primary oxidation state present in the scale for chromium. Reduced salt basicity with lower oxygen concentration favoured the lower oxidation state, whilst Cr3+ ions were dissolved by the salt. •SS316L was corroded in both air and argon environments, argon environments were more aggressive.•Cross sections were analysed with SEM-EDS, XANES and XFM.•Fe2+ and Fe3+ oxidation states were present in both environments.•Cr2+ was the only oxidation state detected in argon, due to reduced salt basicity.•In air, Cr3+ was detected close to the metal but dissolved into the salt leaving a Cr2+ outer layer.
doi_str_mv 10.1016/j.corsci.2021.109966
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629083885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X21007344</els_id><sourcerecordid>2629083885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c12a8233d443c358eb248e041feb011faf5400aaa0a5c23d11a0cfb0a608dd893</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA89ZJsl2zF0EW_0HRQxU8GabZWU3pJjVZi357I-vZ08DjvTe8H2OnAmYCRHW-ntkQk3UzCVJkqa6rao9NhL6oCyjrap9NAAQUtdIvh-wopTUAyKxM2GsTYgzJBc97su_oXep56PhyqUS14PS1DYlaPgT-gM3m_AFl86h4HzYDeZ5wM3DnObrI0bcc41vuIb9zMfie_JCO2UGHm0Qnf3fKnm-un5q7YvF4e99cLQqrNAyFFRK1VKotS2XVXNNKlpqgFB2tQIgOu3kJgIiAcytVKwSC7VaAFei21bWasrOxdxvDxyelwazDZ_T5pZGVrEErrefZVY4umyenSJ3ZRtdj_DYCzC9JszYjSfNL0owkc-xyjFFesHMUTXaQt9S6SHYwbXD_F_wA_O59Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629083885</pqid></control><display><type>article</type><title>Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bell, S. ; Jones, M.W.M. ; Graham, E. ; Peterson, D.J. ; van Riessen, G.A. ; Hinsley, G. ; Steinberg, T. ; Will, G.</creator><creatorcontrib>Bell, S. ; Jones, M.W.M. ; Graham, E. ; Peterson, D.J. ; van Riessen, G.A. ; Hinsley, G. ; Steinberg, T. ; Will, G.</creatorcontrib><description>Molten salts are potential energy storage media for solar thermal power, but can be highly corrosive. To investigate molten salt corrosion mechanisms, the oxidation state and structure of SS316L exposed to salt in air and argon environments was investigated using SEM and XANES techniques. It was determined that iron formed mixed Fe2+ and Fe3+ states in both environments, with lower oxidation states deeper into the corrosion. Cr2+ was the primary oxidation state present in the scale for chromium. Reduced salt basicity with lower oxygen concentration favoured the lower oxidation state, whilst Cr3+ ions were dissolved by the salt. •SS316L was corroded in both air and argon environments, argon environments were more aggressive.•Cross sections were analysed with SEM-EDS, XANES and XFM.•Fe2+ and Fe3+ oxidation states were present in both environments.•Cr2+ was the only oxidation state detected in argon, due to reduced salt basicity.•In air, Cr3+ was detected close to the metal but dissolved into the salt leaving a Cr2+ outer layer.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2021.109966</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Argon ; Basicity ; Chromium ; Corrosion ; Corrosion mechanisms ; Energy storage ; Molten salt corrosion ; Molten salts ; Oxidation ; Oxidation state ; Potential energy ; Sodium carbonate ; Solar heating ; Synchrotron ; Valence</subject><ispartof>Corrosion science, 2022-02, Vol.195, p.109966, Article 109966</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c12a8233d443c358eb248e041feb011faf5400aaa0a5c23d11a0cfb0a608dd893</citedby><cites>FETCH-LOGICAL-c380t-c12a8233d443c358eb248e041feb011faf5400aaa0a5c23d11a0cfb0a608dd893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2021.109966$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bell, S.</creatorcontrib><creatorcontrib>Jones, M.W.M.</creatorcontrib><creatorcontrib>Graham, E.</creatorcontrib><creatorcontrib>Peterson, D.J.</creatorcontrib><creatorcontrib>van Riessen, G.A.</creatorcontrib><creatorcontrib>Hinsley, G.</creatorcontrib><creatorcontrib>Steinberg, T.</creatorcontrib><creatorcontrib>Will, G.</creatorcontrib><title>Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments</title><title>Corrosion science</title><description>Molten salts are potential energy storage media for solar thermal power, but can be highly corrosive. To investigate molten salt corrosion mechanisms, the oxidation state and structure of SS316L exposed to salt in air and argon environments was investigated using SEM and XANES techniques. It was determined that iron formed mixed Fe2+ and Fe3+ states in both environments, with lower oxidation states deeper into the corrosion. Cr2+ was the primary oxidation state present in the scale for chromium. Reduced salt basicity with lower oxygen concentration favoured the lower oxidation state, whilst Cr3+ ions were dissolved by the salt. •SS316L was corroded in both air and argon environments, argon environments were more aggressive.•Cross sections were analysed with SEM-EDS, XANES and XFM.•Fe2+ and Fe3+ oxidation states were present in both environments.•Cr2+ was the only oxidation state detected in argon, due to reduced salt basicity.•In air, Cr3+ was detected close to the metal but dissolved into the salt leaving a Cr2+ outer layer.</description><subject>Argon</subject><subject>Basicity</subject><subject>Chromium</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Energy storage</subject><subject>Molten salt corrosion</subject><subject>Molten salts</subject><subject>Oxidation</subject><subject>Oxidation state</subject><subject>Potential energy</subject><subject>Sodium carbonate</subject><subject>Solar heating</subject><subject>Synchrotron</subject><subject>Valence</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA89ZJsl2zF0EW_0HRQxU8GabZWU3pJjVZi357I-vZ08DjvTe8H2OnAmYCRHW-ntkQk3UzCVJkqa6rao9NhL6oCyjrap9NAAQUtdIvh-wopTUAyKxM2GsTYgzJBc97su_oXep56PhyqUS14PS1DYlaPgT-gM3m_AFl86h4HzYDeZ5wM3DnObrI0bcc41vuIb9zMfie_JCO2UGHm0Qnf3fKnm-un5q7YvF4e99cLQqrNAyFFRK1VKotS2XVXNNKlpqgFB2tQIgOu3kJgIiAcytVKwSC7VaAFei21bWasrOxdxvDxyelwazDZ_T5pZGVrEErrefZVY4umyenSJ3ZRtdj_DYCzC9JszYjSfNL0owkc-xyjFFesHMUTXaQt9S6SHYwbXD_F_wA_O59Jw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Bell, S.</creator><creator>Jones, M.W.M.</creator><creator>Graham, E.</creator><creator>Peterson, D.J.</creator><creator>van Riessen, G.A.</creator><creator>Hinsley, G.</creator><creator>Steinberg, T.</creator><creator>Will, G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202202</creationdate><title>Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments</title><author>Bell, S. ; Jones, M.W.M. ; Graham, E. ; Peterson, D.J. ; van Riessen, G.A. ; Hinsley, G. ; Steinberg, T. ; Will, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c12a8233d443c358eb248e041feb011faf5400aaa0a5c23d11a0cfb0a608dd893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Basicity</topic><topic>Chromium</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Energy storage</topic><topic>Molten salt corrosion</topic><topic>Molten salts</topic><topic>Oxidation</topic><topic>Oxidation state</topic><topic>Potential energy</topic><topic>Sodium carbonate</topic><topic>Solar heating</topic><topic>Synchrotron</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bell, S.</creatorcontrib><creatorcontrib>Jones, M.W.M.</creatorcontrib><creatorcontrib>Graham, E.</creatorcontrib><creatorcontrib>Peterson, D.J.</creatorcontrib><creatorcontrib>van Riessen, G.A.</creatorcontrib><creatorcontrib>Hinsley, G.</creatorcontrib><creatorcontrib>Steinberg, T.</creatorcontrib><creatorcontrib>Will, G.</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bell, S.</au><au>Jones, M.W.M.</au><au>Graham, E.</au><au>Peterson, D.J.</au><au>van Riessen, G.A.</au><au>Hinsley, G.</au><au>Steinberg, T.</au><au>Will, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments</atitle><jtitle>Corrosion science</jtitle><date>2022-02</date><risdate>2022</risdate><volume>195</volume><spage>109966</spage><pages>109966-</pages><artnum>109966</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>Molten salts are potential energy storage media for solar thermal power, but can be highly corrosive. To investigate molten salt corrosion mechanisms, the oxidation state and structure of SS316L exposed to salt in air and argon environments was investigated using SEM and XANES techniques. It was determined that iron formed mixed Fe2+ and Fe3+ states in both environments, with lower oxidation states deeper into the corrosion. Cr2+ was the primary oxidation state present in the scale for chromium. Reduced salt basicity with lower oxygen concentration favoured the lower oxidation state, whilst Cr3+ ions were dissolved by the salt. •SS316L was corroded in both air and argon environments, argon environments were more aggressive.•Cross sections were analysed with SEM-EDS, XANES and XFM.•Fe2+ and Fe3+ oxidation states were present in both environments.•Cr2+ was the only oxidation state detected in argon, due to reduced salt basicity.•In air, Cr3+ was detected close to the metal but dissolved into the salt leaving a Cr2+ outer layer.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2021.109966</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2022-02, Vol.195, p.109966, Article 109966
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2629083885
source Elsevier ScienceDirect Journals Complete
subjects Argon
Basicity
Chromium
Corrosion
Corrosion mechanisms
Energy storage
Molten salt corrosion
Molten salts
Oxidation
Oxidation state
Potential energy
Sodium carbonate
Solar heating
Synchrotron
Valence
title Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20mechanism%20of%20SS316L%20exposed%20to%20NaCl/Na2CO3%20molten%20salt%20in%20air%20and%20argon%20environments&rft.jtitle=Corrosion%20science&rft.au=Bell,%20S.&rft.date=2022-02&rft.volume=195&rft.spage=109966&rft.pages=109966-&rft.artnum=109966&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2021.109966&rft_dat=%3Cproquest_cross%3E2629083885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629083885&rft_id=info:pmid/&rft_els_id=S0010938X21007344&rfr_iscdi=true