Unsupervised Disentanglement with Tensor Product Representations on the Torus
The current methods for learning representations with auto-encoders almost exclusively employ vectors as the latent representations. In this work, we propose to employ a tensor product structure for this purpose. This way, the obtained representations are naturally disentangled. In contrast to the c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rotman, Michael Dekel, Amit Gur, Shir Oz, Yaron Wolf, Lior |
description | The current methods for learning representations with auto-encoders almost exclusively employ vectors as the latent representations. In this work, we propose to employ a tensor product structure for this purpose. This way, the obtained representations are naturally disentangled. In contrast to the conventional variations methods, which are targeted toward normally distributed features, the latent space in our representation is distributed uniformly over a set of unit circles. We argue that the torus structure of the latent space captures the generative factors effectively. We employ recent tools for measuring unsupervised disentanglement, and in an extensive set of experiments demonstrate the advantage of our method in terms of disentanglement, completeness, and informativeness. The code for our proposed method is available at https://github.com/rotmanmi/Unsupervised-Disentanglement-Torus. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628909173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628909173</sourcerecordid><originalsourceid>FETCH-proquest_journals_26289091733</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOC6EBP7WvvAjSBS16XY0bbUpM4k-vsW8QPcnHvgnokIlNarKFsrNRMhcyelVEmq4lgH4ngx7AekV8tYw3akcZW59_gYBd6ta6BAw5bgRLb2VwdnHAi_mWutYbAGXINQWPK8ENNb1TOGv52L5X5XbA7RQPbpkV3ZWU9mvEqVqCyX-SrV-r_qAy6MPvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628909173</pqid></control><display><type>article</type><title>Unsupervised Disentanglement with Tensor Product Representations on the Torus</title><source>Free E- Journals</source><creator>Rotman, Michael ; Dekel, Amit ; Gur, Shir ; Oz, Yaron ; Wolf, Lior</creator><creatorcontrib>Rotman, Michael ; Dekel, Amit ; Gur, Shir ; Oz, Yaron ; Wolf, Lior</creatorcontrib><description>The current methods for learning representations with auto-encoders almost exclusively employ vectors as the latent representations. In this work, we propose to employ a tensor product structure for this purpose. This way, the obtained representations are naturally disentangled. In contrast to the conventional variations methods, which are targeted toward normally distributed features, the latent space in our representation is distributed uniformly over a set of unit circles. We argue that the torus structure of the latent space captures the generative factors effectively. We employ recent tools for measuring unsupervised disentanglement, and in an extensive set of experiments demonstrate the advantage of our method in terms of disentanglement, completeness, and informativeness. The code for our proposed method is available at https://github.com/rotmanmi/Unsupervised-Disentanglement-Torus.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Mathematical analysis ; Representations ; Tensors ; Toruses</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Rotman, Michael</creatorcontrib><creatorcontrib>Dekel, Amit</creatorcontrib><creatorcontrib>Gur, Shir</creatorcontrib><creatorcontrib>Oz, Yaron</creatorcontrib><creatorcontrib>Wolf, Lior</creatorcontrib><title>Unsupervised Disentanglement with Tensor Product Representations on the Torus</title><title>arXiv.org</title><description>The current methods for learning representations with auto-encoders almost exclusively employ vectors as the latent representations. In this work, we propose to employ a tensor product structure for this purpose. This way, the obtained representations are naturally disentangled. In contrast to the conventional variations methods, which are targeted toward normally distributed features, the latent space in our representation is distributed uniformly over a set of unit circles. We argue that the torus structure of the latent space captures the generative factors effectively. We employ recent tools for measuring unsupervised disentanglement, and in an extensive set of experiments demonstrate the advantage of our method in terms of disentanglement, completeness, and informativeness. The code for our proposed method is available at https://github.com/rotmanmi/Unsupervised-Disentanglement-Torus.</description><subject>Coders</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Tensors</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOC6EBP7WvvAjSBS16XY0bbUpM4k-vsW8QPcnHvgnokIlNarKFsrNRMhcyelVEmq4lgH4ngx7AekV8tYw3akcZW59_gYBd6ta6BAw5bgRLb2VwdnHAi_mWutYbAGXINQWPK8ENNb1TOGv52L5X5XbA7RQPbpkV3ZWU9mvEqVqCyX-SrV-r_qAy6MPvg</recordid><startdate>20220213</startdate><enddate>20220213</enddate><creator>Rotman, Michael</creator><creator>Dekel, Amit</creator><creator>Gur, Shir</creator><creator>Oz, Yaron</creator><creator>Wolf, Lior</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220213</creationdate><title>Unsupervised Disentanglement with Tensor Product Representations on the Torus</title><author>Rotman, Michael ; Dekel, Amit ; Gur, Shir ; Oz, Yaron ; Wolf, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26289091733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Tensors</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Rotman, Michael</creatorcontrib><creatorcontrib>Dekel, Amit</creatorcontrib><creatorcontrib>Gur, Shir</creatorcontrib><creatorcontrib>Oz, Yaron</creatorcontrib><creatorcontrib>Wolf, Lior</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotman, Michael</au><au>Dekel, Amit</au><au>Gur, Shir</au><au>Oz, Yaron</au><au>Wolf, Lior</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised Disentanglement with Tensor Product Representations on the Torus</atitle><jtitle>arXiv.org</jtitle><date>2022-02-13</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The current methods for learning representations with auto-encoders almost exclusively employ vectors as the latent representations. In this work, we propose to employ a tensor product structure for this purpose. This way, the obtained representations are naturally disentangled. In contrast to the conventional variations methods, which are targeted toward normally distributed features, the latent space in our representation is distributed uniformly over a set of unit circles. We argue that the torus structure of the latent space captures the generative factors effectively. We employ recent tools for measuring unsupervised disentanglement, and in an extensive set of experiments demonstrate the advantage of our method in terms of disentanglement, completeness, and informativeness. The code for our proposed method is available at https://github.com/rotmanmi/Unsupervised-Disentanglement-Torus.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2628909173 |
source | Free E- Journals |
subjects | Coders Mathematical analysis Representations Tensors Toruses |
title | Unsupervised Disentanglement with Tensor Product Representations on the Torus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20Disentanglement%20with%20Tensor%20Product%20Representations%20on%20the%20Torus&rft.jtitle=arXiv.org&rft.au=Rotman,%20Michael&rft.date=2022-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2628909173%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628909173&rft_id=info:pmid/&rfr_iscdi=true |