Quasistatic cohesive fracture with an alternating direction method of multipliers

A method for quasistatic cohesive fracture is introduced that uses an alternating direction method of multipliers (ADMM) to implement an energy approach to cohesive fracture. The ADMM algorithm minimizes a non-smooth, non-convex potential functional at each strain increment to predict the evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Petrie, James, Hirmand, M Reza, Papoulia, Katerina D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Petrie, James
Hirmand, M Reza
Papoulia, Katerina D
description A method for quasistatic cohesive fracture is introduced that uses an alternating direction method of multipliers (ADMM) to implement an energy approach to cohesive fracture. The ADMM algorithm minimizes a non-smooth, non-convex potential functional at each strain increment to predict the evolution of a cohesive-elastic system. The optimization problem bypasses the explicit stress criterion of force-based (Newtonian) methods, which interferes with Newton iterations impeding convergence. The model is extended with an extrapolation method that significantly reduces the computation time of the sequence of optimizations. The ADMM algorithm is experimentally shown to have nearly linear time complexity and fast iteration times, allowing it to simulate much larger problems than were previously feasible. The effectiveness, as well as the insensitivity of the algorithm to its numerical parameters is demonstrated through examples. It is shown that the Lagrange multiplier method of ADMM is more effective than earlier Nitsche and continuation methods for quasistatic problems. Close spaced minima are identified in complicated microstructures and their effect discussed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628908626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628908626</sourcerecordid><originalsourceid>FETCH-proquest_journals_26289086263</originalsourceid><addsrcrecordid>eNqNzLEKwjAQgOEgCBbtOxw4F2Jqa51FcS24l5BebUra1NxFX98OPoDTv3z8K5GoPD9k1VGpjUiJBimlKk-qKPJE1HXUZIk1WwPG90j2jdAFbTgGhI_lHvQE2jGGaUHTE1ob0LD1E4zIvW_BdzBGx3Z2FgPtxLrTjjD9dSv2t-vjcs_m4F8RiZvBx-XlqFGlqs6yKlWZ_6e-QgFAig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628908626</pqid></control><display><type>article</type><title>Quasistatic cohesive fracture with an alternating direction method of multipliers</title><source>Free E- Journals</source><creator>Petrie, James ; Hirmand, M Reza ; Papoulia, Katerina D</creator><creatorcontrib>Petrie, James ; Hirmand, M Reza ; Papoulia, Katerina D</creatorcontrib><description>A method for quasistatic cohesive fracture is introduced that uses an alternating direction method of multipliers (ADMM) to implement an energy approach to cohesive fracture. The ADMM algorithm minimizes a non-smooth, non-convex potential functional at each strain increment to predict the evolution of a cohesive-elastic system. The optimization problem bypasses the explicit stress criterion of force-based (Newtonian) methods, which interferes with Newton iterations impeding convergence. The model is extended with an extrapolation method that significantly reduces the computation time of the sequence of optimizations. The ADMM algorithm is experimentally shown to have nearly linear time complexity and fast iteration times, allowing it to simulate much larger problems than were previously feasible. The effectiveness, as well as the insensitivity of the algorithm to its numerical parameters is demonstrated through examples. It is shown that the Lagrange multiplier method of ADMM is more effective than earlier Nitsche and continuation methods for quasistatic problems. Close spaced minima are identified in complicated microstructures and their effect discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cohesion ; Continuation methods ; Elastic systems ; Iterative methods ; Lagrange multiplier ; Optimization ; Strain</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Petrie, James</creatorcontrib><creatorcontrib>Hirmand, M Reza</creatorcontrib><creatorcontrib>Papoulia, Katerina D</creatorcontrib><title>Quasistatic cohesive fracture with an alternating direction method of multipliers</title><title>arXiv.org</title><description>A method for quasistatic cohesive fracture is introduced that uses an alternating direction method of multipliers (ADMM) to implement an energy approach to cohesive fracture. The ADMM algorithm minimizes a non-smooth, non-convex potential functional at each strain increment to predict the evolution of a cohesive-elastic system. The optimization problem bypasses the explicit stress criterion of force-based (Newtonian) methods, which interferes with Newton iterations impeding convergence. The model is extended with an extrapolation method that significantly reduces the computation time of the sequence of optimizations. The ADMM algorithm is experimentally shown to have nearly linear time complexity and fast iteration times, allowing it to simulate much larger problems than were previously feasible. The effectiveness, as well as the insensitivity of the algorithm to its numerical parameters is demonstrated through examples. It is shown that the Lagrange multiplier method of ADMM is more effective than earlier Nitsche and continuation methods for quasistatic problems. Close spaced minima are identified in complicated microstructures and their effect discussed.</description><subject>Algorithms</subject><subject>Cohesion</subject><subject>Continuation methods</subject><subject>Elastic systems</subject><subject>Iterative methods</subject><subject>Lagrange multiplier</subject><subject>Optimization</subject><subject>Strain</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzLEKwjAQgOEgCBbtOxw4F2Jqa51FcS24l5BebUra1NxFX98OPoDTv3z8K5GoPD9k1VGpjUiJBimlKk-qKPJE1HXUZIk1WwPG90j2jdAFbTgGhI_lHvQE2jGGaUHTE1ob0LD1E4zIvW_BdzBGx3Z2FgPtxLrTjjD9dSv2t-vjcs_m4F8RiZvBx-XlqFGlqs6yKlWZ_6e-QgFAig</recordid><startdate>20220213</startdate><enddate>20220213</enddate><creator>Petrie, James</creator><creator>Hirmand, M Reza</creator><creator>Papoulia, Katerina D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220213</creationdate><title>Quasistatic cohesive fracture with an alternating direction method of multipliers</title><author>Petrie, James ; Hirmand, M Reza ; Papoulia, Katerina D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26289086263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cohesion</topic><topic>Continuation methods</topic><topic>Elastic systems</topic><topic>Iterative methods</topic><topic>Lagrange multiplier</topic><topic>Optimization</topic><topic>Strain</topic><toplevel>online_resources</toplevel><creatorcontrib>Petrie, James</creatorcontrib><creatorcontrib>Hirmand, M Reza</creatorcontrib><creatorcontrib>Papoulia, Katerina D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrie, James</au><au>Hirmand, M Reza</au><au>Papoulia, Katerina D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quasistatic cohesive fracture with an alternating direction method of multipliers</atitle><jtitle>arXiv.org</jtitle><date>2022-02-13</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A method for quasistatic cohesive fracture is introduced that uses an alternating direction method of multipliers (ADMM) to implement an energy approach to cohesive fracture. The ADMM algorithm minimizes a non-smooth, non-convex potential functional at each strain increment to predict the evolution of a cohesive-elastic system. The optimization problem bypasses the explicit stress criterion of force-based (Newtonian) methods, which interferes with Newton iterations impeding convergence. The model is extended with an extrapolation method that significantly reduces the computation time of the sequence of optimizations. The ADMM algorithm is experimentally shown to have nearly linear time complexity and fast iteration times, allowing it to simulate much larger problems than were previously feasible. The effectiveness, as well as the insensitivity of the algorithm to its numerical parameters is demonstrated through examples. It is shown that the Lagrange multiplier method of ADMM is more effective than earlier Nitsche and continuation methods for quasistatic problems. Close spaced minima are identified in complicated microstructures and their effect discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2628908626
source Free E- Journals
subjects Algorithms
Cohesion
Continuation methods
Elastic systems
Iterative methods
Lagrange multiplier
Optimization
Strain
title Quasistatic cohesive fracture with an alternating direction method of multipliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quasistatic%20cohesive%20fracture%20with%20an%20alternating%20direction%20method%20of%20multipliers&rft.jtitle=arXiv.org&rft.au=Petrie,%20James&rft.date=2022-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2628908626%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628908626&rft_id=info:pmid/&rfr_iscdi=true