On the Computation of General Vector-valued Modular Forms
We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \(2\) associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are lim...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Magnusson, Tobias Raum, Martin |
description | We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \(2\) associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628905852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628905852</sourcerecordid><originalsourceid>FETCH-proquest_journals_26289058523</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsQbU9u5WF3ERVwl2Fu0pLk1Pz6_Dj6A0xm-MxMZKrUpqi3iQuQhDFJKLHeotcpEfXYQHwQNj1OKJj7ZAfdwIEfeWLjSPbIv3sYm6uDEXbLGQ8t-DCsx740NlP-6FOt2f2mOxeT5lSjE28DJuy_dsMSqlrrSqP67Pk_FNhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628905852</pqid></control><display><type>article</type><title>On the Computation of General Vector-valued Modular Forms</title><source>Free E- Journals</source><creator>Magnusson, Tobias ; Raum, Martin</creator><creatorcontrib>Magnusson, Tobias ; Raum, Martin</creatorcontrib><description>We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \(2\) associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Analytic functions ; Dirichlet problem ; Permutations ; Representations ; Subgroups</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Magnusson, Tobias</creatorcontrib><creatorcontrib>Raum, Martin</creatorcontrib><title>On the Computation of General Vector-valued Modular Forms</title><title>arXiv.org</title><description>We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \(2\) associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.</description><subject>Algorithms</subject><subject>Analytic functions</subject><subject>Dirichlet problem</subject><subject>Permutations</subject><subject>Representations</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsQbU9u5WF3ERVwl2Fu0pLk1Pz6_Dj6A0xm-MxMZKrUpqi3iQuQhDFJKLHeotcpEfXYQHwQNj1OKJj7ZAfdwIEfeWLjSPbIv3sYm6uDEXbLGQ8t-DCsx740NlP-6FOt2f2mOxeT5lSjE28DJuy_dsMSqlrrSqP67Pk_FNhw</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Magnusson, Tobias</creator><creator>Raum, Martin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230421</creationdate><title>On the Computation of General Vector-valued Modular Forms</title><author>Magnusson, Tobias ; Raum, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26289058523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analytic functions</topic><topic>Dirichlet problem</topic><topic>Permutations</topic><topic>Representations</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Magnusson, Tobias</creatorcontrib><creatorcontrib>Raum, Martin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magnusson, Tobias</au><au>Raum, Martin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Computation of General Vector-valued Modular Forms</atitle><jtitle>arXiv.org</jtitle><date>2023-04-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \(2\) associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2628905852 |
source | Free E- Journals |
subjects | Algorithms Analytic functions Dirichlet problem Permutations Representations Subgroups |
title | On the Computation of General Vector-valued Modular Forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Computation%20of%20General%20Vector-valued%20Modular%20Forms&rft.jtitle=arXiv.org&rft.au=Magnusson,%20Tobias&rft.date=2023-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2628905852%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628905852&rft_id=info:pmid/&rfr_iscdi=true |