Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone

Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2022-01, Vol.822, p.229186, Article 229186
Hauptverfasser: Harigane, Yumiko, Michibayashi, Katsuyoshi, Morishita, Tomoaki, Tamura, Akihiro, Hashimoto, Satoshi, Snow, Jonathan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 229186
container_title Tectonophysics
container_volume 822
creator Harigane, Yumiko
Michibayashi, Katsuyoshi
Morishita, Tomoaki
Tamura, Akihiro
Hashimoto, Satoshi
Snow, Jonathan E.
description Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (
doi_str_mv 10.1016/j.tecto.2021.229186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628815168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195121004686</els_id><sourcerecordid>2628815168</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYj-Ai9NvLrYlt2ya-KBoKAJCYnRc9Ntp1BYWmwLBn-9i-jV02Rm3nuT-RC6pqRHCeV3y14ClXyPEUZ7jFW05CeoQ8tBlfUZ56eoQ0hOMloV9BxdxLgkhHBa8A7aPYLxYS2T9Q7X4ECmBZ7I1Qoa_Gr1HG7xMKhkFZ4pkO4ej4Nf47V0qQFsGv-Jk_9r4wJkwNZhieNGhgjNvl3ND-GqnQSQ2ro5_vIOLtGZkU2Eq9_aRe_jp7fRczadTV5Gw2kmc0ZSVpU1L5TWZUmLSjIjCTeaV5WSpmLKmFzXeX_AWV6DNjQnNfCBYkzJ9uuS5EW_i26OuZvgP7YQk1j6bXDtScE4O8RSXraq_lGlgo8xgBGbYNcy7AUl4gBYLMUPYHEALI6AW9fD0QXtAzsLQURlwSnQNrRiob391_8NdSuF1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628815168</pqid></control><display><type>article</type><title>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</title><source>Elsevier ScienceDirect Journals</source><creator>Harigane, Yumiko ; Michibayashi, Katsuyoshi ; Morishita, Tomoaki ; Tamura, Akihiro ; Hashimoto, Satoshi ; Snow, Jonathan E.</creator><creatorcontrib>Harigane, Yumiko ; Michibayashi, Katsuyoshi ; Morishita, Tomoaki ; Tamura, Akihiro ; Hashimoto, Satoshi ; Snow, Jonathan E.</creatorcontrib><description>Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (&lt;50% modal serpentine) and ultra-fresh (&lt;1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (&lt;1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 °C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [010]-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (~800 °C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with “dusty” zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls. •Complex partial melting and refertilization developed in the heterogeneous mantle.•Peridotites later underwent mantle-flow to shear-zone plastic deformation.•Deformation in peridotites developed independent of petrogenetic processes.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2021.229186</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Abyssal zone ; Crystal preferred orientation ; Deformation ; Gakkel Ridge ; Grain size ; Heterogeneous mantle ; High temperature ; Low temperature ; Microstructure ; Mineral chemistry ; Ocean floor ; Olivine ; Peridotite ; Plagioclase ; Plastic deformation ; Rift valleys ; Sea floor spreading ; Seafloor spreading ; Serpentine ; Shear zone ; Strain localization ; Temperature ; Trace elements</subject><ispartof>Tectonophysics, 2022-01, Vol.822, p.229186, Article 229186</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</citedby><cites>FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2021.229186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Harigane, Yumiko</creatorcontrib><creatorcontrib>Michibayashi, Katsuyoshi</creatorcontrib><creatorcontrib>Morishita, Tomoaki</creatorcontrib><creatorcontrib>Tamura, Akihiro</creatorcontrib><creatorcontrib>Hashimoto, Satoshi</creatorcontrib><creatorcontrib>Snow, Jonathan E.</creatorcontrib><title>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</title><title>Tectonophysics</title><description>Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (&lt;50% modal serpentine) and ultra-fresh (&lt;1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (&lt;1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 °C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [010]-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (~800 °C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with “dusty” zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls. •Complex partial melting and refertilization developed in the heterogeneous mantle.•Peridotites later underwent mantle-flow to shear-zone plastic deformation.•Deformation in peridotites developed independent of petrogenetic processes.</description><subject>Abyssal zone</subject><subject>Crystal preferred orientation</subject><subject>Deformation</subject><subject>Gakkel Ridge</subject><subject>Grain size</subject><subject>Heterogeneous mantle</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Microstructure</subject><subject>Mineral chemistry</subject><subject>Ocean floor</subject><subject>Olivine</subject><subject>Peridotite</subject><subject>Plagioclase</subject><subject>Plastic deformation</subject><subject>Rift valleys</subject><subject>Sea floor spreading</subject><subject>Seafloor spreading</subject><subject>Serpentine</subject><subject>Shear zone</subject><subject>Strain localization</subject><subject>Temperature</subject><subject>Trace elements</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAjEQhRujiYj-Ai9NvLrYlt2ya-KBoKAJCYnRc9Ntp1BYWmwLBn-9i-jV02Rm3nuT-RC6pqRHCeV3y14ClXyPEUZ7jFW05CeoQ8tBlfUZ56eoQ0hOMloV9BxdxLgkhHBa8A7aPYLxYS2T9Q7X4ECmBZ7I1Qoa_Gr1HG7xMKhkFZ4pkO4ej4Nf47V0qQFsGv-Jk_9r4wJkwNZhieNGhgjNvl3ND-GqnQSQ2ro5_vIOLtGZkU2Eq9_aRe_jp7fRczadTV5Gw2kmc0ZSVpU1L5TWZUmLSjIjCTeaV5WSpmLKmFzXeX_AWV6DNjQnNfCBYkzJ9uuS5EW_i26OuZvgP7YQk1j6bXDtScE4O8RSXraq_lGlgo8xgBGbYNcy7AUl4gBYLMUPYHEALI6AW9fD0QXtAzsLQURlwSnQNrRiob391_8NdSuF1w</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Harigane, Yumiko</creator><creator>Michibayashi, Katsuyoshi</creator><creator>Morishita, Tomoaki</creator><creator>Tamura, Akihiro</creator><creator>Hashimoto, Satoshi</creator><creator>Snow, Jonathan E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20220105</creationdate><title>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</title><author>Harigane, Yumiko ; Michibayashi, Katsuyoshi ; Morishita, Tomoaki ; Tamura, Akihiro ; Hashimoto, Satoshi ; Snow, Jonathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abyssal zone</topic><topic>Crystal preferred orientation</topic><topic>Deformation</topic><topic>Gakkel Ridge</topic><topic>Grain size</topic><topic>Heterogeneous mantle</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Microstructure</topic><topic>Mineral chemistry</topic><topic>Ocean floor</topic><topic>Olivine</topic><topic>Peridotite</topic><topic>Plagioclase</topic><topic>Plastic deformation</topic><topic>Rift valleys</topic><topic>Sea floor spreading</topic><topic>Seafloor spreading</topic><topic>Serpentine</topic><topic>Shear zone</topic><topic>Strain localization</topic><topic>Temperature</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harigane, Yumiko</creatorcontrib><creatorcontrib>Michibayashi, Katsuyoshi</creatorcontrib><creatorcontrib>Morishita, Tomoaki</creatorcontrib><creatorcontrib>Tamura, Akihiro</creatorcontrib><creatorcontrib>Hashimoto, Satoshi</creatorcontrib><creatorcontrib>Snow, Jonathan E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harigane, Yumiko</au><au>Michibayashi, Katsuyoshi</au><au>Morishita, Tomoaki</au><au>Tamura, Akihiro</au><au>Hashimoto, Satoshi</au><au>Snow, Jonathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</atitle><jtitle>Tectonophysics</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>822</volume><spage>229186</spage><pages>229186-</pages><artnum>229186</artnum><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (&lt;50% modal serpentine) and ultra-fresh (&lt;1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (&lt;1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 °C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [010]-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (~800 °C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with “dusty” zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls. •Complex partial melting and refertilization developed in the heterogeneous mantle.•Peridotites later underwent mantle-flow to shear-zone plastic deformation.•Deformation in peridotites developed independent of petrogenetic processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2021.229186</doi></addata></record>
fulltext fulltext
identifier ISSN: 0040-1951
ispartof Tectonophysics, 2022-01, Vol.822, p.229186, Article 229186
issn 0040-1951
1879-3266
language eng
recordid cdi_proquest_journals_2628815168
source Elsevier ScienceDirect Journals
subjects Abyssal zone
Crystal preferred orientation
Deformation
Gakkel Ridge
Grain size
Heterogeneous mantle
High temperature
Low temperature
Microstructure
Mineral chemistry
Ocean floor
Olivine
Peridotite
Plagioclase
Plastic deformation
Rift valleys
Sea floor spreading
Seafloor spreading
Serpentine
Shear zone
Strain localization
Temperature
Trace elements
title Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20beneath%20Gakkel%20Ridge,%20Arctic%20Ocean:%20From%20mantle%20flow%20to%20mantle%20shear%20in%20a%20sparsely%20magmatic%20spreading%20zone&rft.jtitle=Tectonophysics&rft.au=Harigane,%20Yumiko&rft.date=2022-01-05&rft.volume=822&rft.spage=229186&rft.pages=229186-&rft.artnum=229186&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2021.229186&rft_dat=%3Cproquest_cross%3E2628815168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628815168&rft_id=info:pmid/&rft_els_id=S0040195121004686&rfr_iscdi=true