Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone
Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in r...
Gespeichert in:
Veröffentlicht in: | Tectonophysics 2022-01, Vol.822, p.229186, Article 229186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 229186 |
container_title | Tectonophysics |
container_volume | 822 |
creator | Harigane, Yumiko Michibayashi, Katsuyoshi Morishita, Tomoaki Tamura, Akihiro Hashimoto, Satoshi Snow, Jonathan E. |
description | Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh ( |
doi_str_mv | 10.1016/j.tecto.2021.229186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628815168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195121004686</els_id><sourcerecordid>2628815168</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYj-Ai9NvLrYlt2ya-KBoKAJCYnRc9Ntp1BYWmwLBn-9i-jV02Rm3nuT-RC6pqRHCeV3y14ClXyPEUZ7jFW05CeoQ8tBlfUZ56eoQ0hOMloV9BxdxLgkhHBa8A7aPYLxYS2T9Q7X4ECmBZ7I1Qoa_Gr1HG7xMKhkFZ4pkO4ej4Nf47V0qQFsGv-Jk_9r4wJkwNZhieNGhgjNvl3ND-GqnQSQ2ro5_vIOLtGZkU2Eq9_aRe_jp7fRczadTV5Gw2kmc0ZSVpU1L5TWZUmLSjIjCTeaV5WSpmLKmFzXeX_AWV6DNjQnNfCBYkzJ9uuS5EW_i26OuZvgP7YQk1j6bXDtScE4O8RSXraq_lGlgo8xgBGbYNcy7AUl4gBYLMUPYHEALI6AW9fD0QXtAzsLQURlwSnQNrRiob391_8NdSuF1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628815168</pqid></control><display><type>article</type><title>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</title><source>Elsevier ScienceDirect Journals</source><creator>Harigane, Yumiko ; Michibayashi, Katsuyoshi ; Morishita, Tomoaki ; Tamura, Akihiro ; Hashimoto, Satoshi ; Snow, Jonathan E.</creator><creatorcontrib>Harigane, Yumiko ; Michibayashi, Katsuyoshi ; Morishita, Tomoaki ; Tamura, Akihiro ; Hashimoto, Satoshi ; Snow, Jonathan E.</creatorcontrib><description>Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (<50% modal serpentine) and ultra-fresh (<1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (<1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 °C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [010]-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (~800 °C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with “dusty” zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls.
•Complex partial melting and refertilization developed in the heterogeneous mantle.•Peridotites later underwent mantle-flow to shear-zone plastic deformation.•Deformation in peridotites developed independent of petrogenetic processes.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2021.229186</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Abyssal zone ; Crystal preferred orientation ; Deformation ; Gakkel Ridge ; Grain size ; Heterogeneous mantle ; High temperature ; Low temperature ; Microstructure ; Mineral chemistry ; Ocean floor ; Olivine ; Peridotite ; Plagioclase ; Plastic deformation ; Rift valleys ; Sea floor spreading ; Seafloor spreading ; Serpentine ; Shear zone ; Strain localization ; Temperature ; Trace elements</subject><ispartof>Tectonophysics, 2022-01, Vol.822, p.229186, Article 229186</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</citedby><cites>FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2021.229186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Harigane, Yumiko</creatorcontrib><creatorcontrib>Michibayashi, Katsuyoshi</creatorcontrib><creatorcontrib>Morishita, Tomoaki</creatorcontrib><creatorcontrib>Tamura, Akihiro</creatorcontrib><creatorcontrib>Hashimoto, Satoshi</creatorcontrib><creatorcontrib>Snow, Jonathan E.</creatorcontrib><title>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</title><title>Tectonophysics</title><description>Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (<50% modal serpentine) and ultra-fresh (<1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (<1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 °C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [010]-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (~800 °C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with “dusty” zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls.
•Complex partial melting and refertilization developed in the heterogeneous mantle.•Peridotites later underwent mantle-flow to shear-zone plastic deformation.•Deformation in peridotites developed independent of petrogenetic processes.</description><subject>Abyssal zone</subject><subject>Crystal preferred orientation</subject><subject>Deformation</subject><subject>Gakkel Ridge</subject><subject>Grain size</subject><subject>Heterogeneous mantle</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Microstructure</subject><subject>Mineral chemistry</subject><subject>Ocean floor</subject><subject>Olivine</subject><subject>Peridotite</subject><subject>Plagioclase</subject><subject>Plastic deformation</subject><subject>Rift valleys</subject><subject>Sea floor spreading</subject><subject>Seafloor spreading</subject><subject>Serpentine</subject><subject>Shear zone</subject><subject>Strain localization</subject><subject>Temperature</subject><subject>Trace elements</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAjEQhRujiYj-Ai9NvLrYlt2ya-KBoKAJCYnRc9Ntp1BYWmwLBn-9i-jV02Rm3nuT-RC6pqRHCeV3y14ClXyPEUZ7jFW05CeoQ8tBlfUZ56eoQ0hOMloV9BxdxLgkhHBa8A7aPYLxYS2T9Q7X4ECmBZ7I1Qoa_Gr1HG7xMKhkFZ4pkO4ej4Nf47V0qQFsGv-Jk_9r4wJkwNZhieNGhgjNvl3ND-GqnQSQ2ro5_vIOLtGZkU2Eq9_aRe_jp7fRczadTV5Gw2kmc0ZSVpU1L5TWZUmLSjIjCTeaV5WSpmLKmFzXeX_AWV6DNjQnNfCBYkzJ9uuS5EW_i26OuZvgP7YQk1j6bXDtScE4O8RSXraq_lGlgo8xgBGbYNcy7AUl4gBYLMUPYHEALI6AW9fD0QXtAzsLQURlwSnQNrRiob391_8NdSuF1w</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Harigane, Yumiko</creator><creator>Michibayashi, Katsuyoshi</creator><creator>Morishita, Tomoaki</creator><creator>Tamura, Akihiro</creator><creator>Hashimoto, Satoshi</creator><creator>Snow, Jonathan E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20220105</creationdate><title>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</title><author>Harigane, Yumiko ; Michibayashi, Katsuyoshi ; Morishita, Tomoaki ; Tamura, Akihiro ; Hashimoto, Satoshi ; Snow, Jonathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-98b65cdd88159a2fa06fd699caf92cff4db437624bedf140be67c22ca32680453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abyssal zone</topic><topic>Crystal preferred orientation</topic><topic>Deformation</topic><topic>Gakkel Ridge</topic><topic>Grain size</topic><topic>Heterogeneous mantle</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Microstructure</topic><topic>Mineral chemistry</topic><topic>Ocean floor</topic><topic>Olivine</topic><topic>Peridotite</topic><topic>Plagioclase</topic><topic>Plastic deformation</topic><topic>Rift valleys</topic><topic>Sea floor spreading</topic><topic>Seafloor spreading</topic><topic>Serpentine</topic><topic>Shear zone</topic><topic>Strain localization</topic><topic>Temperature</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harigane, Yumiko</creatorcontrib><creatorcontrib>Michibayashi, Katsuyoshi</creatorcontrib><creatorcontrib>Morishita, Tomoaki</creatorcontrib><creatorcontrib>Tamura, Akihiro</creatorcontrib><creatorcontrib>Hashimoto, Satoshi</creatorcontrib><creatorcontrib>Snow, Jonathan E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harigane, Yumiko</au><au>Michibayashi, Katsuyoshi</au><au>Morishita, Tomoaki</au><au>Tamura, Akihiro</au><au>Hashimoto, Satoshi</au><au>Snow, Jonathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone</atitle><jtitle>Tectonophysics</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>822</volume><spage>229186</spage><pages>229186-</pages><artnum>229186</artnum><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (<50% modal serpentine) and ultra-fresh (<1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (<1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 °C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [010]-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (~800 °C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with “dusty” zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls.
•Complex partial melting and refertilization developed in the heterogeneous mantle.•Peridotites later underwent mantle-flow to shear-zone plastic deformation.•Deformation in peridotites developed independent of petrogenetic processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2021.229186</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1951 |
ispartof | Tectonophysics, 2022-01, Vol.822, p.229186, Article 229186 |
issn | 0040-1951 1879-3266 |
language | eng |
recordid | cdi_proquest_journals_2628815168 |
source | Elsevier ScienceDirect Journals |
subjects | Abyssal zone Crystal preferred orientation Deformation Gakkel Ridge Grain size Heterogeneous mantle High temperature Low temperature Microstructure Mineral chemistry Ocean floor Olivine Peridotite Plagioclase Plastic deformation Rift valleys Sea floor spreading Seafloor spreading Serpentine Shear zone Strain localization Temperature Trace elements |
title | Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20beneath%20Gakkel%20Ridge,%20Arctic%20Ocean:%20From%20mantle%20flow%20to%20mantle%20shear%20in%20a%20sparsely%20magmatic%20spreading%20zone&rft.jtitle=Tectonophysics&rft.au=Harigane,%20Yumiko&rft.date=2022-01-05&rft.volume=822&rft.spage=229186&rft.pages=229186-&rft.artnum=229186&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2021.229186&rft_dat=%3Cproquest_cross%3E2628815168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628815168&rft_id=info:pmid/&rft_els_id=S0040195121004686&rfr_iscdi=true |