Infinitesimal symmetries of weakly pseudoconvex manifolds
We consider weakly pseudoconvex hypersurfaces with polynomial models in C N and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinea...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-03, Vol.300 (3), p.2451-2466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2466 |
---|---|
container_issue | 3 |
container_start_page | 2451 |
container_title | Mathematische Zeitschrift |
container_volume | 300 |
creator | Kim, Shin-Young Kolář, Martin |
description | We consider weakly pseudoconvex hypersurfaces with polynomial models in
C
N
and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds. |
doi_str_mv | 10.1007/s00209-021-02873-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628786607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628786607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquo3n2sZRBnYEBN7oOaXIjHdtmTDrW-XtTK7jzwuUuzuNyDkLXlNxSQoq7SAgjFSaMpi0LjscTtKCCM0xLxk_RIuESy7IQ5-gixh0hCSzEAlWb3jV9M0BsOt1m8dh1MIQGYuZdNoJ-b4_ZPsLBeuP7T_jKOt03zrc2XqIzp9sIV793iV4fH15Wa7x9ftqs7rfYcFoN2PLcAK2Jq3OnLZXTgKy54660hIHTRhtWUyZrAGaFEC6XtmTGyUrUruBLdDP77oP_OEAc1M4fQp9eKpanrGWek4nFZpYJPsYATu1DShSOihI1VaTmilSqSP1UpMYk4rMoJnL_BuHP-h_VN6Fya1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628786607</pqid></control><display><type>article</type><title>Infinitesimal symmetries of weakly pseudoconvex manifolds</title><source>SpringerLink Journals</source><creator>Kim, Shin-Young ; Kolář, Martin</creator><creatorcontrib>Kim, Shin-Young ; Kolář, Martin</creatorcontrib><description>We consider weakly pseudoconvex hypersurfaces with polynomial models in
C
N
and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-021-02873-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automorphisms ; Complex variables ; Hyperspaces ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Mathematische Zeitschrift, 2022-03, Vol.300 (3), p.2451-2466</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</citedby><cites>FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-021-02873-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-021-02873-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Shin-Young</creatorcontrib><creatorcontrib>Kolář, Martin</creatorcontrib><title>Infinitesimal symmetries of weakly pseudoconvex manifolds</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We consider weakly pseudoconvex hypersurfaces with polynomial models in
C
N
and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.</description><subject>Automorphisms</subject><subject>Complex variables</subject><subject>Hyperspaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoDrgquo3n2sZRBnYEBN7oOaXIjHdtmTDrW-XtTK7jzwuUuzuNyDkLXlNxSQoq7SAgjFSaMpi0LjscTtKCCM0xLxk_RIuESy7IQ5-gixh0hCSzEAlWb3jV9M0BsOt1m8dh1MIQGYuZdNoJ-b4_ZPsLBeuP7T_jKOt03zrc2XqIzp9sIV793iV4fH15Wa7x9ftqs7rfYcFoN2PLcAK2Jq3OnLZXTgKy54660hIHTRhtWUyZrAGaFEC6XtmTGyUrUruBLdDP77oP_OEAc1M4fQp9eKpanrGWek4nFZpYJPsYATu1DShSOihI1VaTmilSqSP1UpMYk4rMoJnL_BuHP-h_VN6Fya1Y</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kim, Shin-Young</creator><creator>Kolář, Martin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Infinitesimal symmetries of weakly pseudoconvex manifolds</title><author>Kim, Shin-Young ; Kolář, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Complex variables</topic><topic>Hyperspaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Shin-Young</creatorcontrib><creatorcontrib>Kolář, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Shin-Young</au><au>Kolář, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinitesimal symmetries of weakly pseudoconvex manifolds</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>300</volume><issue>3</issue><spage>2451</spage><epage>2466</epage><pages>2451-2466</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We consider weakly pseudoconvex hypersurfaces with polynomial models in
C
N
and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-021-02873-w</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2022-03, Vol.300 (3), p.2451-2466 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2628786607 |
source | SpringerLink Journals |
subjects | Automorphisms Complex variables Hyperspaces Mathematics Mathematics and Statistics Polynomials |
title | Infinitesimal symmetries of weakly pseudoconvex manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinitesimal%20symmetries%20of%20weakly%20pseudoconvex%20manifolds&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Kim,%20Shin-Young&rft.date=2022-03-01&rft.volume=300&rft.issue=3&rft.spage=2451&rft.epage=2466&rft.pages=2451-2466&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-021-02873-w&rft_dat=%3Cproquest_cross%3E2628786607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628786607&rft_id=info:pmid/&rfr_iscdi=true |