Infinitesimal symmetries of weakly pseudoconvex manifolds

We consider weakly pseudoconvex hypersurfaces with polynomial models in C N and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-03, Vol.300 (3), p.2451-2466
Hauptverfasser: Kim, Shin-Young, Kolář, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2466
container_issue 3
container_start_page 2451
container_title Mathematische Zeitschrift
container_volume 300
creator Kim, Shin-Young
Kolář, Martin
description We consider weakly pseudoconvex hypersurfaces with polynomial models in C N and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.
doi_str_mv 10.1007/s00209-021-02873-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628786607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628786607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquo3n2sZRBnYEBN7oOaXIjHdtmTDrW-XtTK7jzwuUuzuNyDkLXlNxSQoq7SAgjFSaMpi0LjscTtKCCM0xLxk_RIuESy7IQ5-gixh0hCSzEAlWb3jV9M0BsOt1m8dh1MIQGYuZdNoJ-b4_ZPsLBeuP7T_jKOt03zrc2XqIzp9sIV793iV4fH15Wa7x9ftqs7rfYcFoN2PLcAK2Jq3OnLZXTgKy54660hIHTRhtWUyZrAGaFEC6XtmTGyUrUruBLdDP77oP_OEAc1M4fQp9eKpanrGWek4nFZpYJPsYATu1DShSOihI1VaTmilSqSP1UpMYk4rMoJnL_BuHP-h_VN6Fya1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628786607</pqid></control><display><type>article</type><title>Infinitesimal symmetries of weakly pseudoconvex manifolds</title><source>SpringerLink Journals</source><creator>Kim, Shin-Young ; Kolář, Martin</creator><creatorcontrib>Kim, Shin-Young ; Kolář, Martin</creatorcontrib><description>We consider weakly pseudoconvex hypersurfaces with polynomial models in C N and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-021-02873-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automorphisms ; Complex variables ; Hyperspaces ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Mathematische Zeitschrift, 2022-03, Vol.300 (3), p.2451-2466</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</citedby><cites>FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-021-02873-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-021-02873-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Shin-Young</creatorcontrib><creatorcontrib>Kolář, Martin</creatorcontrib><title>Infinitesimal symmetries of weakly pseudoconvex manifolds</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We consider weakly pseudoconvex hypersurfaces with polynomial models in C N and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.</description><subject>Automorphisms</subject><subject>Complex variables</subject><subject>Hyperspaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoDrgquo3n2sZRBnYEBN7oOaXIjHdtmTDrW-XtTK7jzwuUuzuNyDkLXlNxSQoq7SAgjFSaMpi0LjscTtKCCM0xLxk_RIuESy7IQ5-gixh0hCSzEAlWb3jV9M0BsOt1m8dh1MIQGYuZdNoJ-b4_ZPsLBeuP7T_jKOt03zrc2XqIzp9sIV793iV4fH15Wa7x9ftqs7rfYcFoN2PLcAK2Jq3OnLZXTgKy54660hIHTRhtWUyZrAGaFEC6XtmTGyUrUruBLdDP77oP_OEAc1M4fQp9eKpanrGWek4nFZpYJPsYATu1DShSOihI1VaTmilSqSP1UpMYk4rMoJnL_BuHP-h_VN6Fya1Y</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kim, Shin-Young</creator><creator>Kolář, Martin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Infinitesimal symmetries of weakly pseudoconvex manifolds</title><author>Kim, Shin-Young ; Kolář, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d36ce1b0fb6fad155555e5b3f3f8d02efacac2b125bee2d444f65d82cf594bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Complex variables</topic><topic>Hyperspaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Shin-Young</creatorcontrib><creatorcontrib>Kolář, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Shin-Young</au><au>Kolář, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinitesimal symmetries of weakly pseudoconvex manifolds</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>300</volume><issue>3</issue><spage>2451</spage><epage>2466</epage><pages>2451-2466</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We consider weakly pseudoconvex hypersurfaces with polynomial models in C N and their symmetry algebras. In the most prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-021-02873-w</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2022-03, Vol.300 (3), p.2451-2466
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2628786607
source SpringerLink Journals
subjects Automorphisms
Complex variables
Hyperspaces
Mathematics
Mathematics and Statistics
Polynomials
title Infinitesimal symmetries of weakly pseudoconvex manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinitesimal%20symmetries%20of%20weakly%20pseudoconvex%20manifolds&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Kim,%20Shin-Young&rft.date=2022-03-01&rft.volume=300&rft.issue=3&rft.spage=2451&rft.epage=2466&rft.pages=2451-2466&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-021-02873-w&rft_dat=%3Cproquest_cross%3E2628786607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628786607&rft_id=info:pmid/&rfr_iscdi=true