On Strominger Space Forms

In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2022-04, Vol.32 (4), Article 141
Hauptverfasser: Chen, Shuwen, Zheng, Fangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The Journal of Geometric Analysis
container_volume 32
creator Chen, Shuwen
Zheng, Fangyang
description In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.
doi_str_mv 10.1007/s12220-022-00882-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2628786557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339050</galeid><sourcerecordid>A707339050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QE8Fz6mTydfusRRbhUIPVfAWsmlStnR3a7I9-O9NXcGb5DCZ4X3n4yHkgcGUAeinxBARKCBSgKJAqi_IiElZ5hQ_LvMfJFBVoromNyntAYTiQo_I_bqdbPrYNXW783GyOVrnJ4suNumWXAV7SP7uN47J--L5bf5CV-vl63y2oo7LoqeSCRW8EtZ6pZwCLz3DwmntVAklAhcIrOJBgKiYw8AqUGIbKm4r4OC3fEweh77H2H2efOrNvjvFNo80qLDQhZJSZ9V0UO3swZu6DV0frctv65vada0Pda7PNGjOy3xrNuBgcLFLKfpgjrFubPwyDMyZmRmYmczM_DAz5yl8MKUsPgP52-Uf1zdSIWt_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628786557</pqid></control><display><type>article</type><title>On Strominger Space Forms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Shuwen ; Zheng, Fangyang</creator><creatorcontrib>Chen, Shuwen ; Zheng, Fangyang</creatorcontrib><description>In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-022-00882-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2022-04, Vol.32 (4), Article 141</ispartof><rights>Mathematica Josephina, Inc. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Mathematica Josephina, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</citedby><cites>FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</cites><orcidid>0000-0002-8983-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-022-00882-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-022-00882-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Chen, Shuwen</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><title>On Strominger Space Forms</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QE8Fz6mTydfusRRbhUIPVfAWsmlStnR3a7I9-O9NXcGb5DCZ4X3n4yHkgcGUAeinxBARKCBSgKJAqi_IiElZ5hQ_LvMfJFBVoromNyntAYTiQo_I_bqdbPrYNXW783GyOVrnJ4suNumWXAV7SP7uN47J--L5bf5CV-vl63y2oo7LoqeSCRW8EtZ6pZwCLz3DwmntVAklAhcIrOJBgKiYw8AqUGIbKm4r4OC3fEweh77H2H2efOrNvjvFNo80qLDQhZJSZ9V0UO3swZu6DV0frctv65vada0Pda7PNGjOy3xrNuBgcLFLKfpgjrFubPwyDMyZmRmYmczM_DAz5yl8MKUsPgP52-Uf1zdSIWt_</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chen, Shuwen</creator><creator>Zheng, Fangyang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-8983-9931</orcidid></search><sort><creationdate>20220401</creationdate><title>On Strominger Space Forms</title><author>Chen, Shuwen ; Zheng, Fangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shuwen</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shuwen</au><au>Zheng, Fangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Strominger Space Forms</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><artnum>141</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-022-00882-7</doi><orcidid>https://orcid.org/0000-0002-8983-9931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2022-04, Vol.32 (4), Article 141
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2628786557
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title On Strominger Space Forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Strominger%20Space%20Forms&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Chen,%20Shuwen&rft.date=2022-04-01&rft.volume=32&rft.issue=4&rft.artnum=141&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-022-00882-7&rft_dat=%3Cgale_proqu%3EA707339050%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628786557&rft_id=info:pmid/&rft_galeid=A707339050&rfr_iscdi=true