On Strominger Space Forms
In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also ver...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-04, Vol.32 (4), Article 141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The Journal of Geometric Analysis |
container_volume | 32 |
creator | Chen, Shuwen Zheng, Fangyang |
description | In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations. |
doi_str_mv | 10.1007/s12220-022-00882-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2628786557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339050</galeid><sourcerecordid>A707339050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QE8Fz6mTydfusRRbhUIPVfAWsmlStnR3a7I9-O9NXcGb5DCZ4X3n4yHkgcGUAeinxBARKCBSgKJAqi_IiElZ5hQ_LvMfJFBVoromNyntAYTiQo_I_bqdbPrYNXW783GyOVrnJ4suNumWXAV7SP7uN47J--L5bf5CV-vl63y2oo7LoqeSCRW8EtZ6pZwCLz3DwmntVAklAhcIrOJBgKiYw8AqUGIbKm4r4OC3fEweh77H2H2efOrNvjvFNo80qLDQhZJSZ9V0UO3swZu6DV0frctv65vada0Pda7PNGjOy3xrNuBgcLFLKfpgjrFubPwyDMyZmRmYmczM_DAz5yl8MKUsPgP52-Uf1zdSIWt_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628786557</pqid></control><display><type>article</type><title>On Strominger Space Forms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Shuwen ; Zheng, Fangyang</creator><creatorcontrib>Chen, Shuwen ; Zheng, Fangyang</creatorcontrib><description>In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-022-00882-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2022-04, Vol.32 (4), Article 141</ispartof><rights>Mathematica Josephina, Inc. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Mathematica Josephina, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</citedby><cites>FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</cites><orcidid>0000-0002-8983-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-022-00882-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-022-00882-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Chen, Shuwen</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><title>On Strominger Space Forms</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QE8Fz6mTydfusRRbhUIPVfAWsmlStnR3a7I9-O9NXcGb5DCZ4X3n4yHkgcGUAeinxBARKCBSgKJAqi_IiElZ5hQ_LvMfJFBVoromNyntAYTiQo_I_bqdbPrYNXW783GyOVrnJ4suNumWXAV7SP7uN47J--L5bf5CV-vl63y2oo7LoqeSCRW8EtZ6pZwCLz3DwmntVAklAhcIrOJBgKiYw8AqUGIbKm4r4OC3fEweh77H2H2efOrNvjvFNo80qLDQhZJSZ9V0UO3swZu6DV0frctv65vada0Pda7PNGjOy3xrNuBgcLFLKfpgjrFubPwyDMyZmRmYmczM_DAz5yl8MKUsPgP52-Uf1zdSIWt_</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chen, Shuwen</creator><creator>Zheng, Fangyang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-8983-9931</orcidid></search><sort><creationdate>20220401</creationdate><title>On Strominger Space Forms</title><author>Chen, Shuwen ; Zheng, Fangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5146fe64aae66c60e5e128c77c69092034201b3f404b1c2f1b064dfb3ab030ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shuwen</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shuwen</au><au>Zheng, Fangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Strominger Space Forms</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><artnum>141</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this article, we propose the following conjecture: if the Strominger connection of a compact Hermitian manifold has constant non-zero holomorphic sectional curvature, then the Hermitian metric must be Kähler. The main result of this article is to confirm the conjecture in dimension 2. We also verify the conjecture in higher dimensions in a couple of special situations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-022-00882-7</doi><orcidid>https://orcid.org/0000-0002-8983-9931</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2022-04, Vol.32 (4), Article 141 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2628786557 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics |
title | On Strominger Space Forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Strominger%20Space%20Forms&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Chen,%20Shuwen&rft.date=2022-04-01&rft.volume=32&rft.issue=4&rft.artnum=141&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-022-00882-7&rft_dat=%3Cgale_proqu%3EA707339050%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628786557&rft_id=info:pmid/&rft_galeid=A707339050&rfr_iscdi=true |