The Group Structure of Quantum Cellular Automata

We consider the group structure of quantum cellular automata (QCA) modulo circuits and show that it is abelian even without assuming the presence of ancillas, at least for most reasonable choices of control space; this is a corollary of a general method of ancilla removal. Further, we show how to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022-02, Vol.389 (3), p.1277-1302
Hauptverfasser: Freedman, Michael, Haah, Jeongwan, Hastings, Matthew B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1302
container_issue 3
container_start_page 1277
container_title Communications in mathematical physics
container_volume 389
creator Freedman, Michael
Haah, Jeongwan
Hastings, Matthew B.
description We consider the group structure of quantum cellular automata (QCA) modulo circuits and show that it is abelian even without assuming the presence of ancillas, at least for most reasonable choices of control space; this is a corollary of a general method of ancilla removal. Further, we show how to define a group of QCA that is well-defined without needing to use families, by showing how to construct a coherent family containing an arbitrary finite QCA; the coherent family consists of QCA on progressively finer systems of qudits where any two members are related by a shallow quantum circuit. This construction applied to translation invariant QCA shows that all translation invariant QCA in three dimensions and all translation invariant Clifford QCA in any dimension are coherent.
doi_str_mv 10.1007/s00220-022-04316-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628786480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628786480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7c67818853e3c3dfd825ba9c32dde967b8425ef296e7378ac5c701dc8f2789923</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuC6-hN0uaxHIqOwoCI4zpk0lQd-hjzgPHfG63gzs05XPjOuXAQuiRwTQDETQCgFHAWDBUjHB-OUEEqlk9F-DEqAAhgxgk_RWch7ABAUc4LBJs3V678lPblc_TJxuRdOXXlUzJjTEPZuL5PvfHlMsVpMNGco5PO9MFd_PoCvdzdbpp7vH5cPTTLNbaMqIiF5UISKWvmmGVt10pab42yjLatU1xsZUVr11HFnWBCGltbAaS1sqNCKkXZAl3NvXs_fSQXot5NyY_5paacSiF5JSFTdKasn0LwrtN7_z4Y_6kJ6O9l9LyMzqJ_ltGHHGJzKGR4fHX-r_qf1Be5d2Uc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628786480</pqid></control><display><type>article</type><title>The Group Structure of Quantum Cellular Automata</title><source>SpringerNature Journals</source><creator>Freedman, Michael ; Haah, Jeongwan ; Hastings, Matthew B.</creator><creatorcontrib>Freedman, Michael ; Haah, Jeongwan ; Hastings, Matthew B.</creatorcontrib><description>We consider the group structure of quantum cellular automata (QCA) modulo circuits and show that it is abelian even without assuming the presence of ancillas, at least for most reasonable choices of control space; this is a corollary of a general method of ancilla removal. Further, we show how to define a group of QCA that is well-defined without needing to use families, by showing how to construct a coherent family containing an arbitrary finite QCA; the coherent family consists of QCA on progressively finer systems of qudits where any two members are related by a shallow quantum circuit. This construction applied to translation invariant QCA shows that all translation invariant QCA in three dimensions and all translation invariant Clifford QCA in any dimension are coherent.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04316-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cellular automata ; Cellular structure ; Circuits ; Classical and Quantum Gravitation ; Coherence ; Complex Systems ; Invariants ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2022-02, Vol.389 (3), p.1277-1302</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7c67818853e3c3dfd825ba9c32dde967b8425ef296e7378ac5c701dc8f2789923</citedby><cites>FETCH-LOGICAL-c319t-7c67818853e3c3dfd825ba9c32dde967b8425ef296e7378ac5c701dc8f2789923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04316-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04316-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Freedman, Michael</creatorcontrib><creatorcontrib>Haah, Jeongwan</creatorcontrib><creatorcontrib>Hastings, Matthew B.</creatorcontrib><title>The Group Structure of Quantum Cellular Automata</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider the group structure of quantum cellular automata (QCA) modulo circuits and show that it is abelian even without assuming the presence of ancillas, at least for most reasonable choices of control space; this is a corollary of a general method of ancilla removal. Further, we show how to define a group of QCA that is well-defined without needing to use families, by showing how to construct a coherent family containing an arbitrary finite QCA; the coherent family consists of QCA on progressively finer systems of qudits where any two members are related by a shallow quantum circuit. This construction applied to translation invariant QCA shows that all translation invariant QCA in three dimensions and all translation invariant Clifford QCA in any dimension are coherent.</description><subject>Cellular automata</subject><subject>Cellular structure</subject><subject>Circuits</subject><subject>Classical and Quantum Gravitation</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Invariants</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf_gKuC6-hN0uaxHIqOwoCI4zpk0lQd-hjzgPHfG63gzs05XPjOuXAQuiRwTQDETQCgFHAWDBUjHB-OUEEqlk9F-DEqAAhgxgk_RWch7ABAUc4LBJs3V678lPblc_TJxuRdOXXlUzJjTEPZuL5PvfHlMsVpMNGco5PO9MFd_PoCvdzdbpp7vH5cPTTLNbaMqIiF5UISKWvmmGVt10pab42yjLatU1xsZUVr11HFnWBCGltbAaS1sqNCKkXZAl3NvXs_fSQXot5NyY_5paacSiF5JSFTdKasn0LwrtN7_z4Y_6kJ6O9l9LyMzqJ_ltGHHGJzKGR4fHX-r_qf1Be5d2Uc</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Freedman, Michael</creator><creator>Haah, Jeongwan</creator><creator>Hastings, Matthew B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>The Group Structure of Quantum Cellular Automata</title><author>Freedman, Michael ; Haah, Jeongwan ; Hastings, Matthew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7c67818853e3c3dfd825ba9c32dde967b8425ef296e7378ac5c701dc8f2789923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cellular automata</topic><topic>Cellular structure</topic><topic>Circuits</topic><topic>Classical and Quantum Gravitation</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Invariants</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freedman, Michael</creatorcontrib><creatorcontrib>Haah, Jeongwan</creatorcontrib><creatorcontrib>Hastings, Matthew B.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freedman, Michael</au><au>Haah, Jeongwan</au><au>Hastings, Matthew B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Group Structure of Quantum Cellular Automata</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>389</volume><issue>3</issue><spage>1277</spage><epage>1302</epage><pages>1277-1302</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider the group structure of quantum cellular automata (QCA) modulo circuits and show that it is abelian even without assuming the presence of ancillas, at least for most reasonable choices of control space; this is a corollary of a general method of ancilla removal. Further, we show how to define a group of QCA that is well-defined without needing to use families, by showing how to construct a coherent family containing an arbitrary finite QCA; the coherent family consists of QCA on progressively finer systems of qudits where any two members are related by a shallow quantum circuit. This construction applied to translation invariant QCA shows that all translation invariant QCA in three dimensions and all translation invariant Clifford QCA in any dimension are coherent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04316-x</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2022-02, Vol.389 (3), p.1277-1302
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2628786480
source SpringerNature Journals
subjects Cellular automata
Cellular structure
Circuits
Classical and Quantum Gravitation
Coherence
Complex Systems
Invariants
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title The Group Structure of Quantum Cellular Automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Group%20Structure%20of%20Quantum%20Cellular%20Automata&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Freedman,%20Michael&rft.date=2022-02-01&rft.volume=389&rft.issue=3&rft.spage=1277&rft.epage=1302&rft.pages=1277-1302&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04316-x&rft_dat=%3Cproquest_cross%3E2628786480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628786480&rft_id=info:pmid/&rfr_iscdi=true