Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering

Vascular regeneration is strictly depended on the proliferation and spreading of the injured endothelial cell layer especially in the small diameter vessels. If a substrate is optimized for this application, there will be new hopes to control the vascular wall thickness. Herein, the various strategi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian polymer journal 2022-02, Vol.31 (2), p.127-141
Hauptverfasser: Hosseinzadeh, Simzar, Zarei-Behjani, Zeinab, Bohlouli, Mahboubeh, Khojasteh, Arash, Ghasemi, Nazanin, Salehi-Nik, Nasim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 2
container_start_page 127
container_title Iranian polymer journal
container_volume 31
creator Hosseinzadeh, Simzar
Zarei-Behjani, Zeinab
Bohlouli, Mahboubeh
Khojasteh, Arash
Ghasemi, Nazanin
Salehi-Nik, Nasim
description Vascular regeneration is strictly depended on the proliferation and spreading of the injured endothelial cell layer especially in the small diameter vessels. If a substrate is optimized for this application, there will be new hopes to control the vascular wall thickness. Herein, the various strategies including the surface modification, co-electrospinning and blend-electrospinning methods were employed to prepare the nanofibrous scaffolds from polyurethane (PU), gelatin and somatotropin. These protein biomolecules could support the endothelial cell attachment and also their proliferation, respectively. The assays including the scaffold fibers and cell morphologies, mechanical tensile behavior, surface wettability, the cell proliferation and the release kinetic profile confirmed the higher bioactivity of the scaffold which was fabricated by a blend of PU, gelatin and somatotropin agents. This group represented better cell spreading and cell attachment in spite of lower mechanical properties compared to the co-electrospun groups. Regarding this issue, the kinetic model for the release of somatotropin growth factor was an anomalous non-Fickian diffusion due to the impact of polymer relaxation and erosion on the somatotropin release. As a whole, by incorporation of somatotropin in the PU fibers, a sustained release pattern resulted. This controlled release manner of somatotropin enhanced the endothelial cell proliferation that is required for the therapeutic goal of the damaged vessels. Graphic abstract
doi_str_mv 10.1007/s13726-021-00983-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628786473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628786473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cd02df6d5982125adcdb7581bbe3a88bff472eea402f1d977a13a3e296dd271d3</originalsourceid><addsrcrecordid>eNp9UE1LxDAULKLgsu4f8BTwXM1H26RHWVwVFrzoOaTJyxLpJjVpF3Z_vVkrePP0hjcz7zFTFLcE3xOM-UMijNOmxJSUGLeClfiiWBDO6rKmTX2ZMc40yfi6WKXkOozrijVVLRbFaaO66LQaXfBIeYPCMLq9O82LYFHngtKjOwDSx955cxb3KGllbegNGiIMKoJB3RFBD3qMIQ3Oe-d3yIaIDirpqVcRjS6lCRD4nfMAMfM3xZVVfYLV71wWH5un9_VLuX17fl0_bkvNSDuW2mBqbGPqVlBCa2W06XgtSNcBU0J01lacAqgKU0tMy7kiTDGgbWMM5cSwZXE33x1i-JogjfIzTNHnl5I2VHDRVJxlFZ1VOidIEawcotureJQEy3PNcq5Z5prlT80SZxObTWk4J4L4d_of1zc_M4Ot</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628786473</pqid></control><display><type>article</type><title>Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering</title><source>SpringerNature Journals</source><creator>Hosseinzadeh, Simzar ; Zarei-Behjani, Zeinab ; Bohlouli, Mahboubeh ; Khojasteh, Arash ; Ghasemi, Nazanin ; Salehi-Nik, Nasim</creator><creatorcontrib>Hosseinzadeh, Simzar ; Zarei-Behjani, Zeinab ; Bohlouli, Mahboubeh ; Khojasteh, Arash ; Ghasemi, Nazanin ; Salehi-Nik, Nasim</creatorcontrib><description>Vascular regeneration is strictly depended on the proliferation and spreading of the injured endothelial cell layer especially in the small diameter vessels. If a substrate is optimized for this application, there will be new hopes to control the vascular wall thickness. Herein, the various strategies including the surface modification, co-electrospinning and blend-electrospinning methods were employed to prepare the nanofibrous scaffolds from polyurethane (PU), gelatin and somatotropin. These protein biomolecules could support the endothelial cell attachment and also their proliferation, respectively. The assays including the scaffold fibers and cell morphologies, mechanical tensile behavior, surface wettability, the cell proliferation and the release kinetic profile confirmed the higher bioactivity of the scaffold which was fabricated by a blend of PU, gelatin and somatotropin agents. This group represented better cell spreading and cell attachment in spite of lower mechanical properties compared to the co-electrospun groups. Regarding this issue, the kinetic model for the release of somatotropin growth factor was an anomalous non-Fickian diffusion due to the impact of polymer relaxation and erosion on the somatotropin release. As a whole, by incorporation of somatotropin in the PU fibers, a sustained release pattern resulted. This controlled release manner of somatotropin enhanced the endothelial cell proliferation that is required for the therapeutic goal of the damaged vessels. Graphic abstract</description><identifier>ISSN: 1026-1265</identifier><identifier>EISSN: 1735-5265</identifier><identifier>DOI: 10.1007/s13726-021-00983-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological activity ; Biomolecules ; Cell growth ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Controlled release ; Diameters ; Electrospinning ; Endothelial cells ; Gelatin ; Glass ; Growth factors ; Growth hormones ; Mechanical properties ; Natural Materials ; Optimization ; Original Research ; Polymer Sciences ; Polyurethane resins ; Regeneration ; Scaffolds ; Substrates ; Sustained release ; Tissue engineering ; Vascular tissue ; Wettability</subject><ispartof>Iranian polymer journal, 2022-02, Vol.31 (2), p.127-141</ispartof><rights>Iran Polymer and Petrochemical Institute 2021</rights><rights>Iran Polymer and Petrochemical Institute 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cd02df6d5982125adcdb7581bbe3a88bff472eea402f1d977a13a3e296dd271d3</citedby><cites>FETCH-LOGICAL-c319t-cd02df6d5982125adcdb7581bbe3a88bff472eea402f1d977a13a3e296dd271d3</cites><orcidid>0000-0001-8749-2447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13726-021-00983-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13726-021-00983-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Hosseinzadeh, Simzar</creatorcontrib><creatorcontrib>Zarei-Behjani, Zeinab</creatorcontrib><creatorcontrib>Bohlouli, Mahboubeh</creatorcontrib><creatorcontrib>Khojasteh, Arash</creatorcontrib><creatorcontrib>Ghasemi, Nazanin</creatorcontrib><creatorcontrib>Salehi-Nik, Nasim</creatorcontrib><title>Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering</title><title>Iranian polymer journal</title><addtitle>Iran Polym J</addtitle><description>Vascular regeneration is strictly depended on the proliferation and spreading of the injured endothelial cell layer especially in the small diameter vessels. If a substrate is optimized for this application, there will be new hopes to control the vascular wall thickness. Herein, the various strategies including the surface modification, co-electrospinning and blend-electrospinning methods were employed to prepare the nanofibrous scaffolds from polyurethane (PU), gelatin and somatotropin. These protein biomolecules could support the endothelial cell attachment and also their proliferation, respectively. The assays including the scaffold fibers and cell morphologies, mechanical tensile behavior, surface wettability, the cell proliferation and the release kinetic profile confirmed the higher bioactivity of the scaffold which was fabricated by a blend of PU, gelatin and somatotropin agents. This group represented better cell spreading and cell attachment in spite of lower mechanical properties compared to the co-electrospun groups. Regarding this issue, the kinetic model for the release of somatotropin growth factor was an anomalous non-Fickian diffusion due to the impact of polymer relaxation and erosion on the somatotropin release. As a whole, by incorporation of somatotropin in the PU fibers, a sustained release pattern resulted. This controlled release manner of somatotropin enhanced the endothelial cell proliferation that is required for the therapeutic goal of the damaged vessels. Graphic abstract</description><subject>Biological activity</subject><subject>Biomolecules</subject><subject>Cell growth</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Controlled release</subject><subject>Diameters</subject><subject>Electrospinning</subject><subject>Endothelial cells</subject><subject>Gelatin</subject><subject>Glass</subject><subject>Growth factors</subject><subject>Growth hormones</subject><subject>Mechanical properties</subject><subject>Natural Materials</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Polymer Sciences</subject><subject>Polyurethane resins</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Substrates</subject><subject>Sustained release</subject><subject>Tissue engineering</subject><subject>Vascular tissue</subject><subject>Wettability</subject><issn>1026-1265</issn><issn>1735-5265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAULKLgsu4f8BTwXM1H26RHWVwVFrzoOaTJyxLpJjVpF3Z_vVkrePP0hjcz7zFTFLcE3xOM-UMijNOmxJSUGLeClfiiWBDO6rKmTX2ZMc40yfi6WKXkOozrijVVLRbFaaO66LQaXfBIeYPCMLq9O82LYFHngtKjOwDSx955cxb3KGllbegNGiIMKoJB3RFBD3qMIQ3Oe-d3yIaIDirpqVcRjS6lCRD4nfMAMfM3xZVVfYLV71wWH5un9_VLuX17fl0_bkvNSDuW2mBqbGPqVlBCa2W06XgtSNcBU0J01lacAqgKU0tMy7kiTDGgbWMM5cSwZXE33x1i-JogjfIzTNHnl5I2VHDRVJxlFZ1VOidIEawcotureJQEy3PNcq5Z5prlT80SZxObTWk4J4L4d_of1zc_M4Ot</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hosseinzadeh, Simzar</creator><creator>Zarei-Behjani, Zeinab</creator><creator>Bohlouli, Mahboubeh</creator><creator>Khojasteh, Arash</creator><creator>Ghasemi, Nazanin</creator><creator>Salehi-Nik, Nasim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8749-2447</orcidid></search><sort><creationdate>20220201</creationdate><title>Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering</title><author>Hosseinzadeh, Simzar ; Zarei-Behjani, Zeinab ; Bohlouli, Mahboubeh ; Khojasteh, Arash ; Ghasemi, Nazanin ; Salehi-Nik, Nasim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cd02df6d5982125adcdb7581bbe3a88bff472eea402f1d977a13a3e296dd271d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological activity</topic><topic>Biomolecules</topic><topic>Cell growth</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Controlled release</topic><topic>Diameters</topic><topic>Electrospinning</topic><topic>Endothelial cells</topic><topic>Gelatin</topic><topic>Glass</topic><topic>Growth factors</topic><topic>Growth hormones</topic><topic>Mechanical properties</topic><topic>Natural Materials</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Polymer Sciences</topic><topic>Polyurethane resins</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Substrates</topic><topic>Sustained release</topic><topic>Tissue engineering</topic><topic>Vascular tissue</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadeh, Simzar</creatorcontrib><creatorcontrib>Zarei-Behjani, Zeinab</creatorcontrib><creatorcontrib>Bohlouli, Mahboubeh</creatorcontrib><creatorcontrib>Khojasteh, Arash</creatorcontrib><creatorcontrib>Ghasemi, Nazanin</creatorcontrib><creatorcontrib>Salehi-Nik, Nasim</creatorcontrib><collection>CrossRef</collection><jtitle>Iranian polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadeh, Simzar</au><au>Zarei-Behjani, Zeinab</au><au>Bohlouli, Mahboubeh</au><au>Khojasteh, Arash</au><au>Ghasemi, Nazanin</au><au>Salehi-Nik, Nasim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering</atitle><jtitle>Iranian polymer journal</jtitle><stitle>Iran Polym J</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>127</spage><epage>141</epage><pages>127-141</pages><issn>1026-1265</issn><eissn>1735-5265</eissn><abstract>Vascular regeneration is strictly depended on the proliferation and spreading of the injured endothelial cell layer especially in the small diameter vessels. If a substrate is optimized for this application, there will be new hopes to control the vascular wall thickness. Herein, the various strategies including the surface modification, co-electrospinning and blend-electrospinning methods were employed to prepare the nanofibrous scaffolds from polyurethane (PU), gelatin and somatotropin. These protein biomolecules could support the endothelial cell attachment and also their proliferation, respectively. The assays including the scaffold fibers and cell morphologies, mechanical tensile behavior, surface wettability, the cell proliferation and the release kinetic profile confirmed the higher bioactivity of the scaffold which was fabricated by a blend of PU, gelatin and somatotropin agents. This group represented better cell spreading and cell attachment in spite of lower mechanical properties compared to the co-electrospun groups. Regarding this issue, the kinetic model for the release of somatotropin growth factor was an anomalous non-Fickian diffusion due to the impact of polymer relaxation and erosion on the somatotropin release. As a whole, by incorporation of somatotropin in the PU fibers, a sustained release pattern resulted. This controlled release manner of somatotropin enhanced the endothelial cell proliferation that is required for the therapeutic goal of the damaged vessels. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13726-021-00983-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8749-2447</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1026-1265
ispartof Iranian polymer journal, 2022-02, Vol.31 (2), p.127-141
issn 1026-1265
1735-5265
language eng
recordid cdi_proquest_journals_2628786473
source SpringerNature Journals
subjects Biological activity
Biomolecules
Cell growth
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Controlled release
Diameters
Electrospinning
Endothelial cells
Gelatin
Glass
Growth factors
Growth hormones
Mechanical properties
Natural Materials
Optimization
Original Research
Polymer Sciences
Polyurethane resins
Regeneration
Scaffolds
Substrates
Sustained release
Tissue engineering
Vascular tissue
Wettability
title Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20optimization%20of%20bioactive%20cylindrical%20scaffold%20prepared%20by%20electrospinning%20for%20vascular%20tissue%20engineering&rft.jtitle=Iranian%20polymer%20journal&rft.au=Hosseinzadeh,%20Simzar&rft.date=2022-02-01&rft.volume=31&rft.issue=2&rft.spage=127&rft.epage=141&rft.pages=127-141&rft.issn=1026-1265&rft.eissn=1735-5265&rft_id=info:doi/10.1007/s13726-021-00983-0&rft_dat=%3Cproquest_cross%3E2628786473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628786473&rft_id=info:pmid/&rfr_iscdi=true