Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting

Exploring highly efficient, economical and environment friendly electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER) is necessary but challenging for economical water splitting. Herein, FeS2 nanoparticles were anchored on the surface of MXene through a simple adsorption-gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2022-02, Vol.9 (4), p.662-669
Hauptverfasser: Xie, Yaoyi, Yu, Hanzhi, Deng, Liming, Amin, R S, Yu, Deshuang, Fetohi, Amani E, Maxim Yu Maximov, Li, Linlin, El-Khatib, K M, Peng, Shengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 4
container_start_page 662
container_title Inorganic chemistry frontiers
container_volume 9
creator Xie, Yaoyi
Yu, Hanzhi
Deng, Liming
Amin, R S
Yu, Deshuang
Fetohi, Amani E
Maxim Yu Maximov
Li, Linlin
El-Khatib, K M
Peng, Shengjie
description Exploring highly efficient, economical and environment friendly electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER) is necessary but challenging for economical water splitting. Herein, FeS2 nanoparticles were anchored on the surface of MXene through a simple adsorption-growth route (FeS2@MXene). By virtue of the large active surface area of FeS2 and its robust interfacial interaction with conductive and hydrophilic MXene nanosheets, the obtained FeS2@MXene composite can accelerate the transfer of mass/charge and facilitate contact between water molecules and reactive sites of FeS2. Specifically, MXene as a support material can not only alter the electrophilicity of the active centers of FeS2 through modulating the electron density but also prevent the aggregation of FeS2, thereby promoting activity and stability. The optimized FeS2@MXene delivers a 10 mA cm−2 current density at overpotentials of 87 and 240 mV in alkaline solution for the HER and OER, respectively, which is comparable with reported transition metal sulfide (TMS) based catalysts. More importantly, in situ Raman spectroscopy reveals that the FeOOH generated during the OER process as a actual active species enhances the intrinsic activity of the catalyst. This work paves a new way for the interface engineering of TMS-based electrocatalysts towards water splitting.
doi_str_mv 10.1039/d1qi01465j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628520236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628520236</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-b22a86ff1df11636e9931b2503d699f8185a3267dae00004363da8d3257deab53</originalsourceid><addsrcrecordid>eNo9jUFLAzEQhYMoWGov_oKA59VMskk3x1KsFioeVPBWsptJm7Ik2yTVv-9SxXeZxzcz7xFyC-wemNAPFo6eQa3k4YJMOJO8AinF5b-v5TWZ5exbNgKmgc0nJC5Ct4_Jhx3NxbQ90hW-cRpMiINJxXc9ZhoDffnEgGec94gl0y9vqA8FkzMdUgw7HxDPOS4mis75zmMo9NuMNzQPvS9l3N6QK2f6jLO_OSUfq8f35XO1eX1aLxebagAQpWo5N41yDqwDUEKh1gJaLpmwSmvXQCON4GpuDbJRtVDCmsYKLucWTSvFlNz95g4pHk-Yy_YQTymMlVuueCM54-PPDwd0XKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628520236</pqid></control><display><type>article</type><title>Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xie, Yaoyi ; Yu, Hanzhi ; Deng, Liming ; Amin, R S ; Yu, Deshuang ; Fetohi, Amani E ; Maxim Yu Maximov ; Li, Linlin ; El-Khatib, K M ; Peng, Shengjie</creator><creatorcontrib>Xie, Yaoyi ; Yu, Hanzhi ; Deng, Liming ; Amin, R S ; Yu, Deshuang ; Fetohi, Amani E ; Maxim Yu Maximov ; Li, Linlin ; El-Khatib, K M ; Peng, Shengjie</creatorcontrib><description>Exploring highly efficient, economical and environment friendly electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER) is necessary but challenging for economical water splitting. Herein, FeS2 nanoparticles were anchored on the surface of MXene through a simple adsorption-growth route (FeS2@MXene). By virtue of the large active surface area of FeS2 and its robust interfacial interaction with conductive and hydrophilic MXene nanosheets, the obtained FeS2@MXene composite can accelerate the transfer of mass/charge and facilitate contact between water molecules and reactive sites of FeS2. Specifically, MXene as a support material can not only alter the electrophilicity of the active centers of FeS2 through modulating the electron density but also prevent the aggregation of FeS2, thereby promoting activity and stability. The optimized FeS2@MXene delivers a 10 mA cm−2 current density at overpotentials of 87 and 240 mV in alkaline solution for the HER and OER, respectively, which is comparable with reported transition metal sulfide (TMS) based catalysts. More importantly, in situ Raman spectroscopy reveals that the FeOOH generated during the OER process as a actual active species enhances the intrinsic activity of the catalyst. This work paves a new way for the interface engineering of TMS-based electrocatalysts towards water splitting.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d1qi01465j</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transfer ; Electrocatalysts ; Electron density ; Inorganic chemistry ; MXenes ; Nanoparticles ; Nanosheets ; Oxygen evolution reactions ; Pyrite ; Raman spectroscopy ; Transition metals ; Water chemistry ; Water splitting</subject><ispartof>Inorganic chemistry frontiers, 2022-02, Vol.9 (4), p.662-669</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Yaoyi</creatorcontrib><creatorcontrib>Yu, Hanzhi</creatorcontrib><creatorcontrib>Deng, Liming</creatorcontrib><creatorcontrib>Amin, R S</creatorcontrib><creatorcontrib>Yu, Deshuang</creatorcontrib><creatorcontrib>Fetohi, Amani E</creatorcontrib><creatorcontrib>Maxim Yu Maximov</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>El-Khatib, K M</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><title>Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting</title><title>Inorganic chemistry frontiers</title><description>Exploring highly efficient, economical and environment friendly electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER) is necessary but challenging for economical water splitting. Herein, FeS2 nanoparticles were anchored on the surface of MXene through a simple adsorption-growth route (FeS2@MXene). By virtue of the large active surface area of FeS2 and its robust interfacial interaction with conductive and hydrophilic MXene nanosheets, the obtained FeS2@MXene composite can accelerate the transfer of mass/charge and facilitate contact between water molecules and reactive sites of FeS2. Specifically, MXene as a support material can not only alter the electrophilicity of the active centers of FeS2 through modulating the electron density but also prevent the aggregation of FeS2, thereby promoting activity and stability. The optimized FeS2@MXene delivers a 10 mA cm−2 current density at overpotentials of 87 and 240 mV in alkaline solution for the HER and OER, respectively, which is comparable with reported transition metal sulfide (TMS) based catalysts. More importantly, in situ Raman spectroscopy reveals that the FeOOH generated during the OER process as a actual active species enhances the intrinsic activity of the catalyst. This work paves a new way for the interface engineering of TMS-based electrocatalysts towards water splitting.</description><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Electrocatalysts</subject><subject>Electron density</subject><subject>Inorganic chemistry</subject><subject>MXenes</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Oxygen evolution reactions</subject><subject>Pyrite</subject><subject>Raman spectroscopy</subject><subject>Transition metals</subject><subject>Water chemistry</subject><subject>Water splitting</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jUFLAzEQhYMoWGov_oKA59VMskk3x1KsFioeVPBWsptJm7Ik2yTVv-9SxXeZxzcz7xFyC-wemNAPFo6eQa3k4YJMOJO8AinF5b-v5TWZ5exbNgKmgc0nJC5Ct4_Jhx3NxbQ90hW-cRpMiINJxXc9ZhoDffnEgGec94gl0y9vqA8FkzMdUgw7HxDPOS4mis75zmMo9NuMNzQPvS9l3N6QK2f6jLO_OSUfq8f35XO1eX1aLxebagAQpWo5N41yDqwDUEKh1gJaLpmwSmvXQCON4GpuDbJRtVDCmsYKLucWTSvFlNz95g4pHk-Yy_YQTymMlVuueCM54-PPDwd0XKA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Xie, Yaoyi</creator><creator>Yu, Hanzhi</creator><creator>Deng, Liming</creator><creator>Amin, R S</creator><creator>Yu, Deshuang</creator><creator>Fetohi, Amani E</creator><creator>Maxim Yu Maximov</creator><creator>Li, Linlin</creator><creator>El-Khatib, K M</creator><creator>Peng, Shengjie</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220215</creationdate><title>Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting</title><author>Xie, Yaoyi ; Yu, Hanzhi ; Deng, Liming ; Amin, R S ; Yu, Deshuang ; Fetohi, Amani E ; Maxim Yu Maximov ; Li, Linlin ; El-Khatib, K M ; Peng, Shengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-b22a86ff1df11636e9931b2503d699f8185a3267dae00004363da8d3257deab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Electrocatalysts</topic><topic>Electron density</topic><topic>Inorganic chemistry</topic><topic>MXenes</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Oxygen evolution reactions</topic><topic>Pyrite</topic><topic>Raman spectroscopy</topic><topic>Transition metals</topic><topic>Water chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yaoyi</creatorcontrib><creatorcontrib>Yu, Hanzhi</creatorcontrib><creatorcontrib>Deng, Liming</creatorcontrib><creatorcontrib>Amin, R S</creatorcontrib><creatorcontrib>Yu, Deshuang</creatorcontrib><creatorcontrib>Fetohi, Amani E</creatorcontrib><creatorcontrib>Maxim Yu Maximov</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>El-Khatib, K M</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yaoyi</au><au>Yu, Hanzhi</au><au>Deng, Liming</au><au>Amin, R S</au><au>Yu, Deshuang</au><au>Fetohi, Amani E</au><au>Maxim Yu Maximov</au><au>Li, Linlin</au><au>El-Khatib, K M</au><au>Peng, Shengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>662</spage><epage>669</epage><pages>662-669</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Exploring highly efficient, economical and environment friendly electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER) is necessary but challenging for economical water splitting. Herein, FeS2 nanoparticles were anchored on the surface of MXene through a simple adsorption-growth route (FeS2@MXene). By virtue of the large active surface area of FeS2 and its robust interfacial interaction with conductive and hydrophilic MXene nanosheets, the obtained FeS2@MXene composite can accelerate the transfer of mass/charge and facilitate contact between water molecules and reactive sites of FeS2. Specifically, MXene as a support material can not only alter the electrophilicity of the active centers of FeS2 through modulating the electron density but also prevent the aggregation of FeS2, thereby promoting activity and stability. The optimized FeS2@MXene delivers a 10 mA cm−2 current density at overpotentials of 87 and 240 mV in alkaline solution for the HER and OER, respectively, which is comparable with reported transition metal sulfide (TMS) based catalysts. More importantly, in situ Raman spectroscopy reveals that the FeOOH generated during the OER process as a actual active species enhances the intrinsic activity of the catalyst. This work paves a new way for the interface engineering of TMS-based electrocatalysts towards water splitting.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1qi01465j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2022-02, Vol.9 (4), p.662-669
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2628520236
source Royal Society Of Chemistry Journals 2008-
subjects Catalysts
Charge transfer
Electrocatalysts
Electron density
Inorganic chemistry
MXenes
Nanoparticles
Nanosheets
Oxygen evolution reactions
Pyrite
Raman spectroscopy
Transition metals
Water chemistry
Water splitting
title Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anchoring%20stable%20FeS2%20nanoparticles%20on%20MXene%20nanosheets%20via%20interface%20engineering%20for%20efficient%20water%20splitting&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Xie,%20Yaoyi&rft.date=2022-02-15&rft.volume=9&rft.issue=4&rft.spage=662&rft.epage=669&rft.pages=662-669&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d1qi01465j&rft_dat=%3Cproquest%3E2628520236%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628520236&rft_id=info:pmid/&rfr_iscdi=true