Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage

Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-03, Vol.15 (3), p.2130-2137
Hauptverfasser: Ma, Zhongliang, Zhao, Yingyan, Wu, Zhaohui, Tang, Qinke, Ni, Jinlian, Zhu, Yunfeng, Zhang, Jiguang, Liu, Yana, Zhang, Yao, Li, Hai-Wen, Hu, Xiaohui, Zhu, Xinjian, Li, Liquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2137
container_issue 3
container_start_page 2130
container_title Nano research
container_volume 15
creator Ma, Zhongliang
Zhao, Yingyan
Wu, Zhaohui
Tang, Qinke
Ni, Jinlian
Zhu, Yunfeng
Zhang, Jiguang
Liu, Yana
Zhang, Yao
Li, Hai-Wen
Hu, Xiaohui
Zhu, Xinjian
Li, Liquan
description Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg 2 NiH 4 ), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg 2 NiH 4 can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg 2 NiH 4 was easy to be oxidized under air atmosphere. However, the in-situ formed Ni during air exposure of Mg 2 NiH 4 improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg 2 NiH 4 . Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.
doi_str_mv 10.1007/s12274-021-3846-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628405941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</originalsourceid><addsrcrecordid>eNp1kE1PwyAYx4nRxDn9AN5IPKNAKYXjsviWLPGiZ0IpdMyu3YDN7NtLU40nn8vzHP4vT34A3BJ8TzCuHiKhtGIIU4IKwTgqz8CMSCkQznP-exPKLsFVjBuMOSVMzMB-4QOKSdedhVvd9jb6wxb23nzaDq5PTfCNhV8-raE-pMHopLtT8gbqvoHRdg7twpCsSf5ooXUuX9ANAQZ7tCH6MXUMGVrbw5iGoFt7DS6c7qK9-dlz8PH0-L58Qau359flYoVMQXhCvKwkpqVsdFNwrXFZN42TQuICa1m7mgrtcmGD60pQnpW85EyK0hgmhOOmmIO7KTd_uD_YmNRmOIQ-VyrKqWC4lIxkFZlUJgwxBuvULvitDidFsBrJqomsymTVSFaV2UMnT8zavrXhL_l_0zczzn26</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405941</pqid></control><display><type>article</type><title>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</title><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Zhongliang ; Zhao, Yingyan ; Wu, Zhaohui ; Tang, Qinke ; Ni, Jinlian ; Zhu, Yunfeng ; Zhang, Jiguang ; Liu, Yana ; Zhang, Yao ; Li, Hai-Wen ; Hu, Xiaohui ; Zhu, Xinjian ; Li, Liquan</creator><creatorcontrib>Ma, Zhongliang ; Zhao, Yingyan ; Wu, Zhaohui ; Tang, Qinke ; Ni, Jinlian ; Zhu, Yunfeng ; Zhang, Jiguang ; Liu, Yana ; Zhang, Yao ; Li, Hai-Wen ; Hu, Xiaohui ; Zhu, Xinjian ; Li, Liquan</creatorcontrib><description>Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg 2 NiH 4 ), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg 2 NiH 4 can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg 2 NiH 4 was easy to be oxidized under air atmosphere. However, the in-situ formed Ni during air exposure of Mg 2 NiH 4 improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg 2 NiH 4 . Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3846-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Air exposure ; Air temperature ; Atmosphere ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Combustion synthesis ; Condensed Matter Physics ; Desorption ; Exposure ; High temperature ; Hydrides ; Hydrogen ; Hydrogen storage ; Kinetics ; Magnesium ; Materials Science ; Mechanical milling ; Nanotechnology ; Nickel ; Operating temperature ; Oxidation ; Oxidation resistance ; Reaction kinetics ; Research Article ; Storage capacity</subject><ispartof>Nano research, 2022-03, Vol.15 (3), p.2130-2137</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</citedby><cites>FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3846-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3846-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ma, Zhongliang</creatorcontrib><creatorcontrib>Zhao, Yingyan</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Tang, Qinke</creatorcontrib><creatorcontrib>Ni, Jinlian</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Zhang, Jiguang</creatorcontrib><creatorcontrib>Liu, Yana</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Li, Hai-Wen</creatorcontrib><creatorcontrib>Hu, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Xinjian</creatorcontrib><creatorcontrib>Li, Liquan</creatorcontrib><title>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg 2 NiH 4 ), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg 2 NiH 4 can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg 2 NiH 4 was easy to be oxidized under air atmosphere. However, the in-situ formed Ni during air exposure of Mg 2 NiH 4 improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg 2 NiH 4 . Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.</description><subject>Air exposure</subject><subject>Air temperature</subject><subject>Atmosphere</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Combustion synthesis</subject><subject>Condensed Matter Physics</subject><subject>Desorption</subject><subject>Exposure</subject><subject>High temperature</subject><subject>Hydrides</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical milling</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Operating temperature</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Reaction kinetics</subject><subject>Research Article</subject><subject>Storage capacity</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PwyAYx4nRxDn9AN5IPKNAKYXjsviWLPGiZ0IpdMyu3YDN7NtLU40nn8vzHP4vT34A3BJ8TzCuHiKhtGIIU4IKwTgqz8CMSCkQznP-exPKLsFVjBuMOSVMzMB-4QOKSdedhVvd9jb6wxb23nzaDq5PTfCNhV8-raE-pMHopLtT8gbqvoHRdg7twpCsSf5ooXUuX9ANAQZ7tCH6MXUMGVrbw5iGoFt7DS6c7qK9-dlz8PH0-L58Qau359flYoVMQXhCvKwkpqVsdFNwrXFZN42TQuICa1m7mgrtcmGD60pQnpW85EyK0hgmhOOmmIO7KTd_uD_YmNRmOIQ-VyrKqWC4lIxkFZlUJgwxBuvULvitDidFsBrJqomsymTVSFaV2UMnT8zavrXhL_l_0zczzn26</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ma, Zhongliang</creator><creator>Zhao, Yingyan</creator><creator>Wu, Zhaohui</creator><creator>Tang, Qinke</creator><creator>Ni, Jinlian</creator><creator>Zhu, Yunfeng</creator><creator>Zhang, Jiguang</creator><creator>Liu, Yana</creator><creator>Zhang, Yao</creator><creator>Li, Hai-Wen</creator><creator>Hu, Xiaohui</creator><creator>Zhu, Xinjian</creator><creator>Li, Liquan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220301</creationdate><title>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</title><author>Ma, Zhongliang ; Zhao, Yingyan ; Wu, Zhaohui ; Tang, Qinke ; Ni, Jinlian ; Zhu, Yunfeng ; Zhang, Jiguang ; Liu, Yana ; Zhang, Yao ; Li, Hai-Wen ; Hu, Xiaohui ; Zhu, Xinjian ; Li, Liquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air exposure</topic><topic>Air temperature</topic><topic>Atmosphere</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Combustion synthesis</topic><topic>Condensed Matter Physics</topic><topic>Desorption</topic><topic>Exposure</topic><topic>High temperature</topic><topic>Hydrides</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical milling</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Operating temperature</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Reaction kinetics</topic><topic>Research Article</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhongliang</creatorcontrib><creatorcontrib>Zhao, Yingyan</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Tang, Qinke</creatorcontrib><creatorcontrib>Ni, Jinlian</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Zhang, Jiguang</creatorcontrib><creatorcontrib>Liu, Yana</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Li, Hai-Wen</creatorcontrib><creatorcontrib>Hu, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Xinjian</creatorcontrib><creatorcontrib>Li, Liquan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhongliang</au><au>Zhao, Yingyan</au><au>Wu, Zhaohui</au><au>Tang, Qinke</au><au>Ni, Jinlian</au><au>Zhu, Yunfeng</au><au>Zhang, Jiguang</au><au>Liu, Yana</au><au>Zhang, Yao</au><au>Li, Hai-Wen</au><au>Hu, Xiaohui</au><au>Zhu, Xinjian</au><au>Li, Liquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>2130</spage><epage>2137</epage><pages>2130-2137</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg 2 NiH 4 ), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg 2 NiH 4 can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg 2 NiH 4 was easy to be oxidized under air atmosphere. However, the in-situ formed Ni during air exposure of Mg 2 NiH 4 improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg 2 NiH 4 . Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3846-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-03, Vol.15 (3), p.2130-2137
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2628405941
source Springer Nature - Complete Springer Journals
subjects Air exposure
Air temperature
Atmosphere
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Combustion synthesis
Condensed Matter Physics
Desorption
Exposure
High temperature
Hydrides
Hydrogen
Hydrogen storage
Kinetics
Magnesium
Materials Science
Mechanical milling
Nanotechnology
Nickel
Operating temperature
Oxidation
Oxidation resistance
Reaction kinetics
Research Article
Storage capacity
title Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-stable%20magnesium%20nickel%20hydride%20with%20autocatalytic%20and%20self-protective%20effect%20for%20reversible%20hydrogen%20storage&rft.jtitle=Nano%20research&rft.au=Ma,%20Zhongliang&rft.date=2022-03-01&rft.volume=15&rft.issue=3&rft.spage=2130&rft.epage=2137&rft.pages=2130-2137&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3846-5&rft_dat=%3Cproquest_cross%3E2628405941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628405941&rft_id=info:pmid/&rfr_iscdi=true