Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage
Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-03, Vol.15 (3), p.2130-2137 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2137 |
---|---|
container_issue | 3 |
container_start_page | 2130 |
container_title | Nano research |
container_volume | 15 |
creator | Ma, Zhongliang Zhao, Yingyan Wu, Zhaohui Tang, Qinke Ni, Jinlian Zhu, Yunfeng Zhang, Jiguang Liu, Yana Zhang, Yao Li, Hai-Wen Hu, Xiaohui Zhu, Xinjian Li, Liquan |
description | Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg
2
NiH
4
), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg
2
NiH
4
can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg
2
NiH
4
was easy to be oxidized under air atmosphere. However, the
in-situ
formed Ni during air exposure of Mg
2
NiH
4
improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg
2
NiH
4
. Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage. |
doi_str_mv | 10.1007/s12274-021-3846-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628405941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</originalsourceid><addsrcrecordid>eNp1kE1PwyAYx4nRxDn9AN5IPKNAKYXjsviWLPGiZ0IpdMyu3YDN7NtLU40nn8vzHP4vT34A3BJ8TzCuHiKhtGIIU4IKwTgqz8CMSCkQznP-exPKLsFVjBuMOSVMzMB-4QOKSdedhVvd9jb6wxb23nzaDq5PTfCNhV8-raE-pMHopLtT8gbqvoHRdg7twpCsSf5ooXUuX9ANAQZ7tCH6MXUMGVrbw5iGoFt7DS6c7qK9-dlz8PH0-L58Qau359flYoVMQXhCvKwkpqVsdFNwrXFZN42TQuICa1m7mgrtcmGD60pQnpW85EyK0hgmhOOmmIO7KTd_uD_YmNRmOIQ-VyrKqWC4lIxkFZlUJgwxBuvULvitDidFsBrJqomsymTVSFaV2UMnT8zavrXhL_l_0zczzn26</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405941</pqid></control><display><type>article</type><title>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</title><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Zhongliang ; Zhao, Yingyan ; Wu, Zhaohui ; Tang, Qinke ; Ni, Jinlian ; Zhu, Yunfeng ; Zhang, Jiguang ; Liu, Yana ; Zhang, Yao ; Li, Hai-Wen ; Hu, Xiaohui ; Zhu, Xinjian ; Li, Liquan</creator><creatorcontrib>Ma, Zhongliang ; Zhao, Yingyan ; Wu, Zhaohui ; Tang, Qinke ; Ni, Jinlian ; Zhu, Yunfeng ; Zhang, Jiguang ; Liu, Yana ; Zhang, Yao ; Li, Hai-Wen ; Hu, Xiaohui ; Zhu, Xinjian ; Li, Liquan</creatorcontrib><description>Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg
2
NiH
4
), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg
2
NiH
4
can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg
2
NiH
4
was easy to be oxidized under air atmosphere. However, the
in-situ
formed Ni during air exposure of Mg
2
NiH
4
improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg
2
NiH
4
. Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3846-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Air exposure ; Air temperature ; Atmosphere ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Combustion synthesis ; Condensed Matter Physics ; Desorption ; Exposure ; High temperature ; Hydrides ; Hydrogen ; Hydrogen storage ; Kinetics ; Magnesium ; Materials Science ; Mechanical milling ; Nanotechnology ; Nickel ; Operating temperature ; Oxidation ; Oxidation resistance ; Reaction kinetics ; Research Article ; Storage capacity</subject><ispartof>Nano research, 2022-03, Vol.15 (3), p.2130-2137</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</citedby><cites>FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3846-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3846-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ma, Zhongliang</creatorcontrib><creatorcontrib>Zhao, Yingyan</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Tang, Qinke</creatorcontrib><creatorcontrib>Ni, Jinlian</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Zhang, Jiguang</creatorcontrib><creatorcontrib>Liu, Yana</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Li, Hai-Wen</creatorcontrib><creatorcontrib>Hu, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Xinjian</creatorcontrib><creatorcontrib>Li, Liquan</creatorcontrib><title>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg
2
NiH
4
), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg
2
NiH
4
can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg
2
NiH
4
was easy to be oxidized under air atmosphere. However, the
in-situ
formed Ni during air exposure of Mg
2
NiH
4
improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg
2
NiH
4
. Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.</description><subject>Air exposure</subject><subject>Air temperature</subject><subject>Atmosphere</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Combustion synthesis</subject><subject>Condensed Matter Physics</subject><subject>Desorption</subject><subject>Exposure</subject><subject>High temperature</subject><subject>Hydrides</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical milling</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Operating temperature</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Reaction kinetics</subject><subject>Research Article</subject><subject>Storage capacity</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PwyAYx4nRxDn9AN5IPKNAKYXjsviWLPGiZ0IpdMyu3YDN7NtLU40nn8vzHP4vT34A3BJ8TzCuHiKhtGIIU4IKwTgqz8CMSCkQznP-exPKLsFVjBuMOSVMzMB-4QOKSdedhVvd9jb6wxb23nzaDq5PTfCNhV8-raE-pMHopLtT8gbqvoHRdg7twpCsSf5ooXUuX9ANAQZ7tCH6MXUMGVrbw5iGoFt7DS6c7qK9-dlz8PH0-L58Qau359flYoVMQXhCvKwkpqVsdFNwrXFZN42TQuICa1m7mgrtcmGD60pQnpW85EyK0hgmhOOmmIO7KTd_uD_YmNRmOIQ-VyrKqWC4lIxkFZlUJgwxBuvULvitDidFsBrJqomsymTVSFaV2UMnT8zavrXhL_l_0zczzn26</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ma, Zhongliang</creator><creator>Zhao, Yingyan</creator><creator>Wu, Zhaohui</creator><creator>Tang, Qinke</creator><creator>Ni, Jinlian</creator><creator>Zhu, Yunfeng</creator><creator>Zhang, Jiguang</creator><creator>Liu, Yana</creator><creator>Zhang, Yao</creator><creator>Li, Hai-Wen</creator><creator>Hu, Xiaohui</creator><creator>Zhu, Xinjian</creator><creator>Li, Liquan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220301</creationdate><title>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</title><author>Ma, Zhongliang ; Zhao, Yingyan ; Wu, Zhaohui ; Tang, Qinke ; Ni, Jinlian ; Zhu, Yunfeng ; Zhang, Jiguang ; Liu, Yana ; Zhang, Yao ; Li, Hai-Wen ; Hu, Xiaohui ; Zhu, Xinjian ; Li, Liquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-65790259dad36aa05bddf989030a9bfb28afeffd0b78260256564985cc488f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air exposure</topic><topic>Air temperature</topic><topic>Atmosphere</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Combustion synthesis</topic><topic>Condensed Matter Physics</topic><topic>Desorption</topic><topic>Exposure</topic><topic>High temperature</topic><topic>Hydrides</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical milling</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Operating temperature</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Reaction kinetics</topic><topic>Research Article</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhongliang</creatorcontrib><creatorcontrib>Zhao, Yingyan</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Tang, Qinke</creatorcontrib><creatorcontrib>Ni, Jinlian</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Zhang, Jiguang</creatorcontrib><creatorcontrib>Liu, Yana</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Li, Hai-Wen</creatorcontrib><creatorcontrib>Hu, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Xinjian</creatorcontrib><creatorcontrib>Li, Liquan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhongliang</au><au>Zhao, Yingyan</au><au>Wu, Zhaohui</au><au>Tang, Qinke</au><au>Ni, Jinlian</au><au>Zhu, Yunfeng</au><au>Zhang, Jiguang</au><au>Liu, Yana</au><au>Zhang, Yao</au><au>Li, Hai-Wen</au><au>Hu, Xiaohui</au><au>Zhu, Xinjian</au><au>Li, Liquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>2130</spage><epage>2137</epage><pages>2130-2137</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg
2
NiH
4
), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg
2
NiH
4
can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg
2
NiH
4
was easy to be oxidized under air atmosphere. However, the
in-situ
formed Ni during air exposure of Mg
2
NiH
4
improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg
2
NiH
4
. Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3846-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-03, Vol.15 (3), p.2130-2137 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2628405941 |
source | Springer Nature - Complete Springer Journals |
subjects | Air exposure Air temperature Atmosphere Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Combustion synthesis Condensed Matter Physics Desorption Exposure High temperature Hydrides Hydrogen Hydrogen storage Kinetics Magnesium Materials Science Mechanical milling Nanotechnology Nickel Operating temperature Oxidation Oxidation resistance Reaction kinetics Research Article Storage capacity |
title | Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-stable%20magnesium%20nickel%20hydride%20with%20autocatalytic%20and%20self-protective%20effect%20for%20reversible%20hydrogen%20storage&rft.jtitle=Nano%20research&rft.au=Ma,%20Zhongliang&rft.date=2022-03-01&rft.volume=15&rft.issue=3&rft.spage=2130&rft.epage=2137&rft.pages=2130-2137&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3846-5&rft_dat=%3Cproquest_cross%3E2628405941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628405941&rft_id=info:pmid/&rfr_iscdi=true |