Device performance limit of monolayer SnSe2 MOSFET
Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current ( I on ). Monolayer (ML) SnSe 2 , as an abundant, economic, nontoxic, and stable two-dimensional...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-03, Vol.15 (3), p.2522-2530 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2530 |
---|---|
container_issue | 3 |
container_start_page | 2522 |
container_title | Nano research |
container_volume | 15 |
creator | Li, Hong Liang, Jiakun Wang, Qida Liu, Fengbin Zhou, Gang Qing, Tao Zhang, Shaohua Lu, Jing |
description | Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (
I
on
). Monolayer (ML) SnSe
2
, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe
2
metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (
L
g
) and ultralow supply voltage (
V
dd
) by using the
ab initio
quantum transport simulation. An ultrahigh
I
on
of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-
L
g
ML SnSe
2
MOSFET at
V
dd
= 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until
L
g
scales down to 2 and 3 nm, the MOSFETs (at
V
dd
= 0.65 V) surpass
I
on
, intrinsic delay time (
τ
), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-
L
g
ML SnSe
2
MOSFET (at
V
dd
= 0.4 V) fulfills the IRDS HP device and the 7-nm-
L
g
MOSFET (at
V
dd
= 0.55 V) fulfills the IRDS LP device for the year 2034. |
doi_str_mv | 10.1007/s12274-021-3785-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628405702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFz9HM5HOPUj-h0kP1HLJrIlu6m5q0Qv97U1bx5FzmMbz3Bn6EXAK7Bsb0TQZELShDoFwbSeGITKCuDWVljn81oDglZzmvGFMIwkwI3vmvrvXVxqcQU--Gotdd322rGKo-DnHt9j5Vy2HpsXpZLB_uX8_JSXDr7C9-9pS8levsic4Xj8-z2zltOagtdcFADUYJzrWTolHBC_ABUTZBNrpGNCiNemeBC9SsUU60OkhVe27aRko-JVdj7ybFz53PW7uKuzSUlxYVGsGkZlhcMLraFHNOPthN6nqX9haYPaCxIxpb0NgDGgslg2MmF-_w4dNf8_-hb03BY2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405702</pqid></control><display><type>article</type><title>Device performance limit of monolayer SnSe2 MOSFET</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Hong ; Liang, Jiakun ; Wang, Qida ; Liu, Fengbin ; Zhou, Gang ; Qing, Tao ; Zhang, Shaohua ; Lu, Jing</creator><creatorcontrib>Li, Hong ; Liang, Jiakun ; Wang, Qida ; Liu, Fengbin ; Zhou, Gang ; Qing, Tao ; Zhang, Shaohua ; Lu, Jing</creatorcontrib><description>Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (
I
on
). Monolayer (ML) SnSe
2
, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe
2
metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (
L
g
) and ultralow supply voltage (
V
dd
) by using the
ab initio
quantum transport simulation. An ultrahigh
I
on
of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-
L
g
ML SnSe
2
MOSFET at
V
dd
= 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until
L
g
scales down to 2 and 3 nm, the MOSFETs (at
V
dd
= 0.65 V) surpass
I
on
, intrinsic delay time (
τ
), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-
L
g
ML SnSe
2
MOSFET (at
V
dd
= 0.4 V) fulfills the IRDS HP device and the 7-nm-
L
g
MOSFET (at
V
dd
= 0.55 V) fulfills the IRDS LP device for the year 2034.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3785-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anisotropy ; Approximation ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Delay time ; Dimensional stability ; Field effect transistors ; Laboratories ; Materials Science ; Metal oxide semiconductors ; Monolayers ; MOSFETs ; Nanotechnology ; Power management ; Quantum transport ; Research Article ; Semiconductor devices ; Semiconductors ; Simulation ; Software ; Transistors ; Two dimensional materials</subject><ispartof>Nano research, 2022-03, Vol.15 (3), p.2522-2530</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</citedby><cites>FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3785-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3785-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Liang, Jiakun</creatorcontrib><creatorcontrib>Wang, Qida</creatorcontrib><creatorcontrib>Liu, Fengbin</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><creatorcontrib>Qing, Tao</creatorcontrib><creatorcontrib>Zhang, Shaohua</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><title>Device performance limit of monolayer SnSe2 MOSFET</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (
I
on
). Monolayer (ML) SnSe
2
, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe
2
metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (
L
g
) and ultralow supply voltage (
V
dd
) by using the
ab initio
quantum transport simulation. An ultrahigh
I
on
of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-
L
g
ML SnSe
2
MOSFET at
V
dd
= 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until
L
g
scales down to 2 and 3 nm, the MOSFETs (at
V
dd
= 0.65 V) surpass
I
on
, intrinsic delay time (
τ
), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-
L
g
ML SnSe
2
MOSFET (at
V
dd
= 0.4 V) fulfills the IRDS HP device and the 7-nm-
L
g
MOSFET (at
V
dd
= 0.55 V) fulfills the IRDS LP device for the year 2034.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Delay time</subject><subject>Dimensional stability</subject><subject>Field effect transistors</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Monolayers</subject><subject>MOSFETs</subject><subject>Nanotechnology</subject><subject>Power management</subject><subject>Quantum transport</subject><subject>Research Article</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Simulation</subject><subject>Software</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKt_gLcFz9HM5HOPUj-h0kP1HLJrIlu6m5q0Qv97U1bx5FzmMbz3Bn6EXAK7Bsb0TQZELShDoFwbSeGITKCuDWVljn81oDglZzmvGFMIwkwI3vmvrvXVxqcQU--Gotdd322rGKo-DnHt9j5Vy2HpsXpZLB_uX8_JSXDr7C9-9pS8levsic4Xj8-z2zltOagtdcFADUYJzrWTolHBC_ABUTZBNrpGNCiNemeBC9SsUU60OkhVe27aRko-JVdj7ybFz53PW7uKuzSUlxYVGsGkZlhcMLraFHNOPthN6nqX9haYPaCxIxpb0NgDGgslg2MmF-_w4dNf8_-hb03BY2g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Hong</creator><creator>Liang, Jiakun</creator><creator>Wang, Qida</creator><creator>Liu, Fengbin</creator><creator>Zhou, Gang</creator><creator>Qing, Tao</creator><creator>Zhang, Shaohua</creator><creator>Lu, Jing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220301</creationdate><title>Device performance limit of monolayer SnSe2 MOSFET</title><author>Li, Hong ; Liang, Jiakun ; Wang, Qida ; Liu, Fengbin ; Zhou, Gang ; Qing, Tao ; Zhang, Shaohua ; Lu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Delay time</topic><topic>Dimensional stability</topic><topic>Field effect transistors</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Monolayers</topic><topic>MOSFETs</topic><topic>Nanotechnology</topic><topic>Power management</topic><topic>Quantum transport</topic><topic>Research Article</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Simulation</topic><topic>Software</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Liang, Jiakun</creatorcontrib><creatorcontrib>Wang, Qida</creatorcontrib><creatorcontrib>Liu, Fengbin</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><creatorcontrib>Qing, Tao</creatorcontrib><creatorcontrib>Zhang, Shaohua</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hong</au><au>Liang, Jiakun</au><au>Wang, Qida</au><au>Liu, Fengbin</au><au>Zhou, Gang</au><au>Qing, Tao</au><au>Zhang, Shaohua</au><au>Lu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Device performance limit of monolayer SnSe2 MOSFET</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>2522</spage><epage>2530</epage><pages>2522-2530</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (
I
on
). Monolayer (ML) SnSe
2
, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe
2
metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (
L
g
) and ultralow supply voltage (
V
dd
) by using the
ab initio
quantum transport simulation. An ultrahigh
I
on
of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-
L
g
ML SnSe
2
MOSFET at
V
dd
= 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until
L
g
scales down to 2 and 3 nm, the MOSFETs (at
V
dd
= 0.65 V) surpass
I
on
, intrinsic delay time (
τ
), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-
L
g
ML SnSe
2
MOSFET (at
V
dd
= 0.4 V) fulfills the IRDS HP device and the 7-nm-
L
g
MOSFET (at
V
dd
= 0.55 V) fulfills the IRDS LP device for the year 2034.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3785-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-03, Vol.15 (3), p.2522-2530 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2628405702 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Approximation Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Delay time Dimensional stability Field effect transistors Laboratories Materials Science Metal oxide semiconductors Monolayers MOSFETs Nanotechnology Power management Quantum transport Research Article Semiconductor devices Semiconductors Simulation Software Transistors Two dimensional materials |
title | Device performance limit of monolayer SnSe2 MOSFET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Device%20performance%20limit%20of%20monolayer%20SnSe2%20MOSFET&rft.jtitle=Nano%20research&rft.au=Li,%20Hong&rft.date=2022-03-01&rft.volume=15&rft.issue=3&rft.spage=2522&rft.epage=2530&rft.pages=2522-2530&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3785-1&rft_dat=%3Cproquest_cross%3E2628405702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628405702&rft_id=info:pmid/&rfr_iscdi=true |