Device performance limit of monolayer SnSe2 MOSFET

Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current ( I on ). Monolayer (ML) SnSe 2 , as an abundant, economic, nontoxic, and stable two-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-03, Vol.15 (3), p.2522-2530
Hauptverfasser: Li, Hong, Liang, Jiakun, Wang, Qida, Liu, Fengbin, Zhou, Gang, Qing, Tao, Zhang, Shaohua, Lu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2530
container_issue 3
container_start_page 2522
container_title Nano research
container_volume 15
creator Li, Hong
Liang, Jiakun
Wang, Qida
Liu, Fengbin
Zhou, Gang
Qing, Tao
Zhang, Shaohua
Lu, Jing
description Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current ( I on ). Monolayer (ML) SnSe 2 , as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe 2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length ( L g ) and ultralow supply voltage ( V dd ) by using the ab initio quantum transport simulation. An ultrahigh I on of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm- L g ML SnSe 2 MOSFET at V dd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until L g scales down to 2 and 3 nm, the MOSFETs (at V dd = 0.65 V) surpass I on , intrinsic delay time ( τ ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm- L g ML SnSe 2 MOSFET (at V dd = 0.4 V) fulfills the IRDS HP device and the 7-nm- L g MOSFET (at V dd = 0.55 V) fulfills the IRDS LP device for the year 2034.
doi_str_mv 10.1007/s12274-021-3785-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628405702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFz9HM5HOPUj-h0kP1HLJrIlu6m5q0Qv97U1bx5FzmMbz3Bn6EXAK7Bsb0TQZELShDoFwbSeGITKCuDWVljn81oDglZzmvGFMIwkwI3vmvrvXVxqcQU--Gotdd322rGKo-DnHt9j5Vy2HpsXpZLB_uX8_JSXDr7C9-9pS8levsic4Xj8-z2zltOagtdcFADUYJzrWTolHBC_ABUTZBNrpGNCiNemeBC9SsUU60OkhVe27aRko-JVdj7ybFz53PW7uKuzSUlxYVGsGkZlhcMLraFHNOPthN6nqX9haYPaCxIxpb0NgDGgslg2MmF-_w4dNf8_-hb03BY2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405702</pqid></control><display><type>article</type><title>Device performance limit of monolayer SnSe2 MOSFET</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Hong ; Liang, Jiakun ; Wang, Qida ; Liu, Fengbin ; Zhou, Gang ; Qing, Tao ; Zhang, Shaohua ; Lu, Jing</creator><creatorcontrib>Li, Hong ; Liang, Jiakun ; Wang, Qida ; Liu, Fengbin ; Zhou, Gang ; Qing, Tao ; Zhang, Shaohua ; Lu, Jing</creatorcontrib><description>Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current ( I on ). Monolayer (ML) SnSe 2 , as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe 2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length ( L g ) and ultralow supply voltage ( V dd ) by using the ab initio quantum transport simulation. An ultrahigh I on of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm- L g ML SnSe 2 MOSFET at V dd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until L g scales down to 2 and 3 nm, the MOSFETs (at V dd = 0.65 V) surpass I on , intrinsic delay time ( τ ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm- L g ML SnSe 2 MOSFET (at V dd = 0.4 V) fulfills the IRDS HP device and the 7-nm- L g MOSFET (at V dd = 0.55 V) fulfills the IRDS LP device for the year 2034.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3785-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anisotropy ; Approximation ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Delay time ; Dimensional stability ; Field effect transistors ; Laboratories ; Materials Science ; Metal oxide semiconductors ; Monolayers ; MOSFETs ; Nanotechnology ; Power management ; Quantum transport ; Research Article ; Semiconductor devices ; Semiconductors ; Simulation ; Software ; Transistors ; Two dimensional materials</subject><ispartof>Nano research, 2022-03, Vol.15 (3), p.2522-2530</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</citedby><cites>FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3785-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3785-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Liang, Jiakun</creatorcontrib><creatorcontrib>Wang, Qida</creatorcontrib><creatorcontrib>Liu, Fengbin</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><creatorcontrib>Qing, Tao</creatorcontrib><creatorcontrib>Zhang, Shaohua</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><title>Device performance limit of monolayer SnSe2 MOSFET</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current ( I on ). Monolayer (ML) SnSe 2 , as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe 2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length ( L g ) and ultralow supply voltage ( V dd ) by using the ab initio quantum transport simulation. An ultrahigh I on of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm- L g ML SnSe 2 MOSFET at V dd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until L g scales down to 2 and 3 nm, the MOSFETs (at V dd = 0.65 V) surpass I on , intrinsic delay time ( τ ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm- L g ML SnSe 2 MOSFET (at V dd = 0.4 V) fulfills the IRDS HP device and the 7-nm- L g MOSFET (at V dd = 0.55 V) fulfills the IRDS LP device for the year 2034.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Delay time</subject><subject>Dimensional stability</subject><subject>Field effect transistors</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Monolayers</subject><subject>MOSFETs</subject><subject>Nanotechnology</subject><subject>Power management</subject><subject>Quantum transport</subject><subject>Research Article</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Simulation</subject><subject>Software</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKt_gLcFz9HM5HOPUj-h0kP1HLJrIlu6m5q0Qv97U1bx5FzmMbz3Bn6EXAK7Bsb0TQZELShDoFwbSeGITKCuDWVljn81oDglZzmvGFMIwkwI3vmvrvXVxqcQU--Gotdd322rGKo-DnHt9j5Vy2HpsXpZLB_uX8_JSXDr7C9-9pS8levsic4Xj8-z2zltOagtdcFADUYJzrWTolHBC_ABUTZBNrpGNCiNemeBC9SsUU60OkhVe27aRko-JVdj7ybFz53PW7uKuzSUlxYVGsGkZlhcMLraFHNOPthN6nqX9haYPaCxIxpb0NgDGgslg2MmF-_w4dNf8_-hb03BY2g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Hong</creator><creator>Liang, Jiakun</creator><creator>Wang, Qida</creator><creator>Liu, Fengbin</creator><creator>Zhou, Gang</creator><creator>Qing, Tao</creator><creator>Zhang, Shaohua</creator><creator>Lu, Jing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220301</creationdate><title>Device performance limit of monolayer SnSe2 MOSFET</title><author>Li, Hong ; Liang, Jiakun ; Wang, Qida ; Liu, Fengbin ; Zhou, Gang ; Qing, Tao ; Zhang, Shaohua ; Lu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af8191864337a54b6fe41ef225bf5b792282586d0f34270b6a4c7f569e38cb553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Delay time</topic><topic>Dimensional stability</topic><topic>Field effect transistors</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Monolayers</topic><topic>MOSFETs</topic><topic>Nanotechnology</topic><topic>Power management</topic><topic>Quantum transport</topic><topic>Research Article</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Simulation</topic><topic>Software</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Liang, Jiakun</creatorcontrib><creatorcontrib>Wang, Qida</creatorcontrib><creatorcontrib>Liu, Fengbin</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><creatorcontrib>Qing, Tao</creatorcontrib><creatorcontrib>Zhang, Shaohua</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hong</au><au>Liang, Jiakun</au><au>Wang, Qida</au><au>Liu, Fengbin</au><au>Zhou, Gang</au><au>Qing, Tao</au><au>Zhang, Shaohua</au><au>Lu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Device performance limit of monolayer SnSe2 MOSFET</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>2522</spage><epage>2530</epage><pages>2522-2530</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current ( I on ). Monolayer (ML) SnSe 2 , as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe 2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length ( L g ) and ultralow supply voltage ( V dd ) by using the ab initio quantum transport simulation. An ultrahigh I on of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm- L g ML SnSe 2 MOSFET at V dd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until L g scales down to 2 and 3 nm, the MOSFETs (at V dd = 0.65 V) surpass I on , intrinsic delay time ( τ ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm- L g ML SnSe 2 MOSFET (at V dd = 0.4 V) fulfills the IRDS HP device and the 7-nm- L g MOSFET (at V dd = 0.55 V) fulfills the IRDS LP device for the year 2034.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3785-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-03, Vol.15 (3), p.2522-2530
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2628405702
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Approximation
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Delay time
Dimensional stability
Field effect transistors
Laboratories
Materials Science
Metal oxide semiconductors
Monolayers
MOSFETs
Nanotechnology
Power management
Quantum transport
Research Article
Semiconductor devices
Semiconductors
Simulation
Software
Transistors
Two dimensional materials
title Device performance limit of monolayer SnSe2 MOSFET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Device%20performance%20limit%20of%20monolayer%20SnSe2%20MOSFET&rft.jtitle=Nano%20research&rft.au=Li,%20Hong&rft.date=2022-03-01&rft.volume=15&rft.issue=3&rft.spage=2522&rft.epage=2530&rft.pages=2522-2530&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3785-1&rft_dat=%3Cproquest_cross%3E2628405702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628405702&rft_id=info:pmid/&rfr_iscdi=true