Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains

Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Mei, Jingyi, Xu, Ming, Guan, Ji, Deng, Yuxin, Yu, Nengkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mei, Jingyi
Xu, Ming
Guan, Ji
Deng, Yuxin
Yu, Nengkun
description Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is famous for verifying real-time systems, including classical CTMCs. The core of checking the CSL formulas lies in tackling multiphase until formulas. We develop an algebraic method using proper projection, matrix exponentiation, and definite integration to symbolically calculate the probability measures of path formulas. Thus the decidability of CSL is established. To be efficient, numerical methods are incorporated to guarantee that the time complexity is polynomial in the encoding size of the input model and linear in the size of the input formula. A running example of Apollonian networks is further provided to demonstrate our method.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628405301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405301</sourcerecordid><originalsourceid>FETCH-proquest_journals_26284053013</originalsourceid><addsrcrecordid>eNqNyrEOgjAUheHGxESivEMTZ5JyC8jeaBx0UNlNQyoUpFe5rc8vJg6OLucfzjdjEUiZJmUGsGAxUSeEgGIDeS4jdlatqXvrGq7QeesCBuIXj3WryduaH7CZVjfaOvL8FLTzYfixSWUHw4967PHFVfthKza_6TuZ-NslW--2ldonjxGfwZC_dhhGN11XKKDMRC5FKv9Tbx9tP_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405301</pqid></control><display><type>article</type><title>Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains</title><source>Free E- Journals</source><creator>Mei, Jingyi ; Xu, Ming ; Guan, Ji ; Deng, Yuxin ; Yu, Nengkun</creator><creatorcontrib>Mei, Jingyi ; Xu, Ming ; Guan, Ji ; Deng, Yuxin ; Yu, Nengkun</creatorcontrib><description>Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is famous for verifying real-time systems, including classical CTMCs. The core of checking the CSL formulas lies in tackling multiphase until formulas. We develop an algebraic method using proper projection, matrix exponentiation, and definite integration to symbolically calculate the probability measures of path formulas. Thus the decidability of CSL is established. To be efficient, numerical methods are incorporated to guarantee that the time complexity is polynomial in the encoding size of the input model and linear in the size of the input formula. A running example of Apollonian networks is further provided to demonstrate our method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chain branching ; Markov analysis ; Markov chains ; Mathematical analysis ; Matrices (mathematics) ; Numerical methods ; Polynomials</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mei, Jingyi</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Guan, Ji</creatorcontrib><creatorcontrib>Deng, Yuxin</creatorcontrib><creatorcontrib>Yu, Nengkun</creatorcontrib><title>Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains</title><title>arXiv.org</title><description>Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is famous for verifying real-time systems, including classical CTMCs. The core of checking the CSL formulas lies in tackling multiphase until formulas. We develop an algebraic method using proper projection, matrix exponentiation, and definite integration to symbolically calculate the probability measures of path formulas. Thus the decidability of CSL is established. To be efficient, numerical methods are incorporated to guarantee that the time complexity is polynomial in the encoding size of the input model and linear in the size of the input formula. A running example of Apollonian networks is further provided to demonstrate our method.</description><subject>Chain branching</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Numerical methods</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEOgjAUheHGxESivEMTZ5JyC8jeaBx0UNlNQyoUpFe5rc8vJg6OLucfzjdjEUiZJmUGsGAxUSeEgGIDeS4jdlatqXvrGq7QeesCBuIXj3WryduaH7CZVjfaOvL8FLTzYfixSWUHw4967PHFVfthKza_6TuZ-NslW--2ldonjxGfwZC_dhhGN11XKKDMRC5FKv9Tbx9tP_Y</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Mei, Jingyi</creator><creator>Xu, Ming</creator><creator>Guan, Ji</creator><creator>Deng, Yuxin</creator><creator>Yu, Nengkun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230630</creationdate><title>Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains</title><author>Mei, Jingyi ; Xu, Ming ; Guan, Ji ; Deng, Yuxin ; Yu, Nengkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26284053013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chain branching</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Numerical methods</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Mei, Jingyi</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Guan, Ji</creatorcontrib><creatorcontrib>Deng, Yuxin</creatorcontrib><creatorcontrib>Yu, Nengkun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Jingyi</au><au>Xu, Ming</au><au>Guan, Ji</au><au>Deng, Yuxin</au><au>Yu, Nengkun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains</atitle><jtitle>arXiv.org</jtitle><date>2023-06-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is famous for verifying real-time systems, including classical CTMCs. The core of checking the CSL formulas lies in tackling multiphase until formulas. We develop an algebraic method using proper projection, matrix exponentiation, and definite integration to symbolically calculate the probability measures of path formulas. Thus the decidability of CSL is established. To be efficient, numerical methods are incorporated to guarantee that the time complexity is polynomial in the encoding size of the input model and linear in the size of the input formula. A running example of Apollonian networks is further provided to demonstrate our method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2628405301
source Free E- Journals
subjects Chain branching
Markov analysis
Markov chains
Mathematical analysis
Matrices (mathematics)
Numerical methods
Polynomials
title Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Checking%20Continuous%20Stochastic%20Logic%20against%20Quantum%20Continuous-Time%20Markov%20Chains&rft.jtitle=arXiv.org&rft.au=Mei,%20Jingyi&rft.date=2023-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2628405301%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628405301&rft_id=info:pmid/&rfr_iscdi=true