Product-Coproduct Prographs and Triangulations of the Sphere
In this paper, we explain how the classical Catalan families of objects involving paths, tableaux, triangulations, parentheses configurations and more generalize canonically to a three-dimensional version. In particular, we present product-coproduct prographs as central objects explaining the combin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we explain how the classical Catalan families of objects involving paths, tableaux, triangulations, parentheses configurations and more generalize canonically to a three-dimensional version. In particular, we present product-coproduct prographs as central objects explaining the combinatorics of the triangulations of the sphere. Then we expose a natural way to extend the Tamari lattice to the product-coproduct prographs. |
---|---|
ISSN: | 2331-8422 |