Stabilization of an Axially Moving Elastic Tape Under an External Disturbance

This paper considers the stabilization problem of a hybrid system consisting of a linear Euler-Bernoulli beam equation, which describes the motion of a tape moving axially between two sets of rollers, where the mass of the left rollers is taken into account and subject to an external disturbance. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2022-02, Vol.177 (1), Article 12
Hauptverfasser: Aouragh, My Driss, Nahli, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Acta applicandae mathematicae
container_volume 177
creator Aouragh, My Driss
Nahli, Mohamed
description This paper considers the stabilization problem of a hybrid system consisting of a linear Euler-Bernoulli beam equation, which describes the motion of a tape moving axially between two sets of rollers, where the mass of the left rollers is taken into account and subject to an external disturbance. The objective of this work is to propose a nonlinear feedback control law to cancel the effect of the uniformly bounded external disturbance located at the left rollers. The well-posedness of the system is proved by the nonlinear maximal-monotone operators theory and the variational principle. Moreover, the exponential stability is established by the Lyapunov approach. Finally, the article concludes by presenting some numerical simulations to illustrate the validity of the theoretical results.
doi_str_mv 10.1007/s10440-022-00473-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628404607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628404607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-42f6ceaf04139915e34d397e9ad56ba2065a479655d418df1715bf76d2156a03</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXAdfTm3SxLrQ9ocWFdh8xMUlLGmZpMpfXXO3UEd67u5pyPy0HomsItBdB3mYIQQIAxAiA0J-wEjajUjBjg6hSNgCpNJkDNObrIeQMA3Cg1QsvXzhWxjl-ui22D24Bdg6f76Or6gJftZ2zWeF673MUSr9zW47em8ukIzfedT42r8X3M3S4Vrin9JToLrs7-6veO0ephvpo9kcXL4_NsuiAlp6YjggVVehdAUG4MlZ6LihvtjaukKhwDJZ3QRklZCTqpAtVUFkGrilGpHPAxuhlmt6n92Pnc2U27O_6SLVNsIkAo0D3FBqpMbc7JB7tN8d2lg6Vgj9XsUM321exPNct6iQ9S7uFm7dPf9D_WN_ORbio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628404607</pqid></control><display><type>article</type><title>Stabilization of an Axially Moving Elastic Tape Under an External Disturbance</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aouragh, My Driss ; Nahli, Mohamed</creator><creatorcontrib>Aouragh, My Driss ; Nahli, Mohamed</creatorcontrib><description>This paper considers the stabilization problem of a hybrid system consisting of a linear Euler-Bernoulli beam equation, which describes the motion of a tape moving axially between two sets of rollers, where the mass of the left rollers is taken into account and subject to an external disturbance. The objective of this work is to propose a nonlinear feedback control law to cancel the effect of the uniformly bounded external disturbance located at the left rollers. The well-posedness of the system is proved by the nonlinear maximal-monotone operators theory and the variational principle. Moreover, the exponential stability is established by the Lyapunov approach. Finally, the article concludes by presenting some numerical simulations to illustrate the validity of the theoretical results.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-022-00473-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Closed loop systems ; Computational Mathematics and Numerical Analysis ; Euler-Bernoulli beams ; Feedback control ; Hybrid systems ; Laboratories ; Mathematics ; Mathematics and Statistics ; Nonlinear control ; Nonlinear feedback ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Rollers ; Stabilization</subject><ispartof>Acta applicandae mathematicae, 2022-02, Vol.177 (1), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-42f6ceaf04139915e34d397e9ad56ba2065a479655d418df1715bf76d2156a03</citedby><cites>FETCH-LOGICAL-c319t-42f6ceaf04139915e34d397e9ad56ba2065a479655d418df1715bf76d2156a03</cites><orcidid>0000-0002-3078-4294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-022-00473-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-022-00473-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aouragh, My Driss</creatorcontrib><creatorcontrib>Nahli, Mohamed</creatorcontrib><title>Stabilization of an Axially Moving Elastic Tape Under an External Disturbance</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>This paper considers the stabilization problem of a hybrid system consisting of a linear Euler-Bernoulli beam equation, which describes the motion of a tape moving axially between two sets of rollers, where the mass of the left rollers is taken into account and subject to an external disturbance. The objective of this work is to propose a nonlinear feedback control law to cancel the effect of the uniformly bounded external disturbance located at the left rollers. The well-posedness of the system is proved by the nonlinear maximal-monotone operators theory and the variational principle. Moreover, the exponential stability is established by the Lyapunov approach. Finally, the article concludes by presenting some numerical simulations to illustrate the validity of the theoretical results.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Closed loop systems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euler-Bernoulli beams</subject><subject>Feedback control</subject><subject>Hybrid systems</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Rollers</subject><subject>Stabilization</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEURoMoWKt_wFXAdfTm3SxLrQ9ocWFdh8xMUlLGmZpMpfXXO3UEd67u5pyPy0HomsItBdB3mYIQQIAxAiA0J-wEjajUjBjg6hSNgCpNJkDNObrIeQMA3Cg1QsvXzhWxjl-ui22D24Bdg6f76Or6gJftZ2zWeF673MUSr9zW47em8ukIzfedT42r8X3M3S4Vrin9JToLrs7-6veO0ephvpo9kcXL4_NsuiAlp6YjggVVehdAUG4MlZ6LihvtjaukKhwDJZ3QRklZCTqpAtVUFkGrilGpHPAxuhlmt6n92Pnc2U27O_6SLVNsIkAo0D3FBqpMbc7JB7tN8d2lg6Vgj9XsUM321exPNct6iQ9S7uFm7dPf9D_WN_ORbio</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Aouragh, My Driss</creator><creator>Nahli, Mohamed</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3078-4294</orcidid></search><sort><creationdate>20220201</creationdate><title>Stabilization of an Axially Moving Elastic Tape Under an External Disturbance</title><author>Aouragh, My Driss ; Nahli, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-42f6ceaf04139915e34d397e9ad56ba2065a479655d418df1715bf76d2156a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Closed loop systems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euler-Bernoulli beams</topic><topic>Feedback control</topic><topic>Hybrid systems</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Rollers</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouragh, My Driss</creatorcontrib><creatorcontrib>Nahli, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouragh, My Driss</au><au>Nahli, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of an Axially Moving Elastic Tape Under an External Disturbance</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>177</volume><issue>1</issue><artnum>12</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>This paper considers the stabilization problem of a hybrid system consisting of a linear Euler-Bernoulli beam equation, which describes the motion of a tape moving axially between two sets of rollers, where the mass of the left rollers is taken into account and subject to an external disturbance. The objective of this work is to propose a nonlinear feedback control law to cancel the effect of the uniformly bounded external disturbance located at the left rollers. The well-posedness of the system is proved by the nonlinear maximal-monotone operators theory and the variational principle. Moreover, the exponential stability is established by the Lyapunov approach. Finally, the article concludes by presenting some numerical simulations to illustrate the validity of the theoretical results.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-022-00473-2</doi><orcidid>https://orcid.org/0000-0002-3078-4294</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2022-02, Vol.177 (1), Article 12
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_2628404607
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Closed loop systems
Computational Mathematics and Numerical Analysis
Euler-Bernoulli beams
Feedback control
Hybrid systems
Laboratories
Mathematics
Mathematics and Statistics
Nonlinear control
Nonlinear feedback
Partial Differential Equations
Probability Theory and Stochastic Processes
Rollers
Stabilization
title Stabilization of an Axially Moving Elastic Tape Under an External Disturbance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20an%20Axially%20Moving%20Elastic%20Tape%20Under%20an%20External%20Disturbance&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Aouragh,%20My%20Driss&rft.date=2022-02-01&rft.volume=177&rft.issue=1&rft.artnum=12&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-022-00473-2&rft_dat=%3Cproquest_cross%3E2628404607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628404607&rft_id=info:pmid/&rfr_iscdi=true