Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model

In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-02, Vol.107 (3), p.2773-2785
Hauptverfasser: Hu, Bei-Bei, Lin, Ji, Zhang, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2785
container_issue 3
container_start_page 2773
container_title Nonlinear dynamics
container_volume 107
creator Hu, Bei-Bei
Lin, Ji
Zhang, Ling
description In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a 4 × 4 unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.
doi_str_mv 10.1007/s11071-021-07135-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628404265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628404265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpeltN6goAuF7mImk9ipM0lNpkJd-Q6-oU_itCO4c3H4z-K_wIfQKYFzApBdREIgIwnQ_jLCREL30IiIjCU0Leb7aAQF5QkUMD9ERzEuAYBRyEfoebpxqq01Ls1Cvdc-ROwtjr6pO--2uu5q7yK2PmCFu0UwJtF-vWpMhWfqNS5a5ZT7_vx66KPmo979U-Vq0-DWV6Y5RgdWNdGc_OoYPV1fPU5uk9n9zd3kcpZolrIusZW2oBXJOAFCUlZqXQhRVEbkTJXKaGZLA4RrTSDXYFWhueAioyVJbcopG6OzoXcV_NvaxE4u_Tq4flLSlOYcOE1F76KDSwcfYzBWrkLdqrCRBOSWpBxIyp6k3JGU22o2hGJvdi8m_FX_k_oB-CF51w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628404265</pqid></control><display><type>article</type><title>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</title><source>SpringerNature Journals</source><creator>Hu, Bei-Bei ; Lin, Ji ; Zhang, Ling</creator><creatorcontrib>Hu, Bei-Bei ; Lin, Ji ; Zhang, Ling</creatorcontrib><description>In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a 4 × 4 unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07135-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary conditions ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Mathematics ; Mechanical Engineering ; Original Paper ; Physics ; Solitary waves ; Spectrum analysis ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-02, Vol.107 (3), p.2773-2785</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</citedby><cites>FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</cites><orcidid>0000-0001-7317-6873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-07135-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-07135-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Bei-Bei</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><title>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a 4 × 4 unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.</description><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Solitary waves</subject><subject>Spectrum analysis</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpeltN6goAuF7mImk9ipM0lNpkJd-Q6-oU_itCO4c3H4z-K_wIfQKYFzApBdREIgIwnQ_jLCREL30IiIjCU0Leb7aAQF5QkUMD9ERzEuAYBRyEfoebpxqq01Ls1Cvdc-ROwtjr6pO--2uu5q7yK2PmCFu0UwJtF-vWpMhWfqNS5a5ZT7_vx66KPmo979U-Vq0-DWV6Y5RgdWNdGc_OoYPV1fPU5uk9n9zd3kcpZolrIusZW2oBXJOAFCUlZqXQhRVEbkTJXKaGZLA4RrTSDXYFWhueAioyVJbcopG6OzoXcV_NvaxE4u_Tq4flLSlOYcOE1F76KDSwcfYzBWrkLdqrCRBOSWpBxIyp6k3JGU22o2hGJvdi8m_FX_k_oB-CF51w</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hu, Bei-Bei</creator><creator>Lin, Ji</creator><creator>Zhang, Ling</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7317-6873</orcidid></search><sort><creationdate>20220201</creationdate><title>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</title><author>Hu, Bei-Bei ; Lin, Ji ; Zhang, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Solitary waves</topic><topic>Spectrum analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Bei-Bei</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Bei-Bei</au><au>Lin, Ji</au><au>Zhang, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>107</volume><issue>3</issue><spage>2773</spage><epage>2785</epage><pages>2773-2785</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a 4 × 4 unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07135-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7317-6873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-02, Vol.107 (3), p.2773-2785
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2628404265
source SpringerNature Journals
subjects Automotive Engineering
Boundary conditions
Classical Mechanics
Control
Dynamical Systems
Engineering
Mathematics
Mechanical Engineering
Original Paper
Physics
Solitary waves
Spectrum analysis
Vibration
title Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20behaviors%20of%20soliton%20solutions%20for%20a%20three-coupled%20Lakshmanan%E2%80%93Porsezian%E2%80%93Daniel%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Hu,%20Bei-Bei&rft.date=2022-02-01&rft.volume=107&rft.issue=3&rft.spage=2773&rft.epage=2785&rft.pages=2773-2785&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07135-2&rft_dat=%3Cproquest_cross%3E2628404265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628404265&rft_id=info:pmid/&rfr_iscdi=true