Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model
In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair,...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-02, Vol.107 (3), p.2773-2785 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2785 |
---|---|
container_issue | 3 |
container_start_page | 2773 |
container_title | Nonlinear dynamics |
container_volume | 107 |
creator | Hu, Bei-Bei Lin, Ji Zhang, Ling |
description | In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a
4
×
4
unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed. |
doi_str_mv | 10.1007/s11071-021-07135-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628404265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628404265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpeltN6goAuF7mImk9ipM0lNpkJd-Q6-oU_itCO4c3H4z-K_wIfQKYFzApBdREIgIwnQ_jLCREL30IiIjCU0Leb7aAQF5QkUMD9ERzEuAYBRyEfoebpxqq01Ls1Cvdc-ROwtjr6pO--2uu5q7yK2PmCFu0UwJtF-vWpMhWfqNS5a5ZT7_vx66KPmo979U-Vq0-DWV6Y5RgdWNdGc_OoYPV1fPU5uk9n9zd3kcpZolrIusZW2oBXJOAFCUlZqXQhRVEbkTJXKaGZLA4RrTSDXYFWhueAioyVJbcopG6OzoXcV_NvaxE4u_Tq4flLSlOYcOE1F76KDSwcfYzBWrkLdqrCRBOSWpBxIyp6k3JGU22o2hGJvdi8m_FX_k_oB-CF51w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628404265</pqid></control><display><type>article</type><title>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</title><source>SpringerNature Journals</source><creator>Hu, Bei-Bei ; Lin, Ji ; Zhang, Ling</creator><creatorcontrib>Hu, Bei-Bei ; Lin, Ji ; Zhang, Ling</creatorcontrib><description>In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a
4
×
4
unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07135-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary conditions ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Mathematics ; Mechanical Engineering ; Original Paper ; Physics ; Solitary waves ; Spectrum analysis ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-02, Vol.107 (3), p.2773-2785</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</citedby><cites>FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</cites><orcidid>0000-0001-7317-6873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-07135-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-07135-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Bei-Bei</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><title>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a
4
×
4
unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.</description><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Solitary waves</subject><subject>Spectrum analysis</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpeltN6goAuF7mImk9ipM0lNpkJd-Q6-oU_itCO4c3H4z-K_wIfQKYFzApBdREIgIwnQ_jLCREL30IiIjCU0Leb7aAQF5QkUMD9ERzEuAYBRyEfoebpxqq01Ls1Cvdc-ROwtjr6pO--2uu5q7yK2PmCFu0UwJtF-vWpMhWfqNS5a5ZT7_vx66KPmo979U-Vq0-DWV6Y5RgdWNdGc_OoYPV1fPU5uk9n9zd3kcpZolrIusZW2oBXJOAFCUlZqXQhRVEbkTJXKaGZLA4RrTSDXYFWhueAioyVJbcopG6OzoXcV_NvaxE4u_Tq4flLSlOYcOE1F76KDSwcfYzBWrkLdqrCRBOSWpBxIyp6k3JGU22o2hGJvdi8m_FX_k_oB-CF51w</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hu, Bei-Bei</creator><creator>Lin, Ji</creator><creator>Zhang, Ling</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7317-6873</orcidid></search><sort><creationdate>20220201</creationdate><title>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</title><author>Hu, Bei-Bei ; Lin, Ji ; Zhang, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fdcf0ca174101163bcc9559de583abaec3fbe014cc108c0fa9c454572b16f6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Solitary waves</topic><topic>Spectrum analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Bei-Bei</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Bei-Bei</au><au>Lin, Ji</au><au>Zhang, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>107</volume><issue>3</issue><spage>2773</spage><epage>2785</epage><pages>2773-2785</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a
4
×
4
unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07135-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7317-6873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-02, Vol.107 (3), p.2773-2785 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2628404265 |
source | SpringerNature Journals |
subjects | Automotive Engineering Boundary conditions Classical Mechanics Control Dynamical Systems Engineering Mathematics Mechanical Engineering Original Paper Physics Solitary waves Spectrum analysis Vibration |
title | Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20behaviors%20of%20soliton%20solutions%20for%20a%20three-coupled%20Lakshmanan%E2%80%93Porsezian%E2%80%93Daniel%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Hu,%20Bei-Bei&rft.date=2022-02-01&rft.volume=107&rft.issue=3&rft.spage=2773&rft.epage=2785&rft.pages=2773-2785&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07135-2&rft_dat=%3Cproquest_cross%3E2628404265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628404265&rft_id=info:pmid/&rfr_iscdi=true |