The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes
A urethane methacrylate monomer, 2-((methylcarbamoyl)oxy)ethyl methacrylate, (MEM), was synthesized via a non-isocyanate pathway and incorporated into latexes using a semi-continuous emulsion polymerization. Homogeneous and core-shell latexes were prepared using MEM, methyl methacrylate (MMA) and bu...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2021-02, Vol.214, p.123253, Article 123253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 123253 |
container_title | Polymer (Guilford) |
container_volume | 214 |
creator | Cobaj, Anisa Mehr, Hamideh S. Hu, Yongan Soucek, Mark D. |
description | A urethane methacrylate monomer, 2-((methylcarbamoyl)oxy)ethyl methacrylate, (MEM), was synthesized via a non-isocyanate pathway and incorporated into latexes using a semi-continuous emulsion polymerization. Homogeneous and core-shell latexes were prepared using MEM, methyl methacrylate (MMA) and butyl acrylate (BA). Narrow particle size distribution and high conversion was achieved for all latexes. Core-shell structure was corroborated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and transmission electron microscopy (TEM). Thermal properties, viscoelastic, mechanical properties and morphology were evaluated and compared as a function of increasing concentration of the urethane methacrylate monomer. Enhanced viscoelastic and mechanical properties were obtained with higher MEM content in both homogeneous and core-shell latexes. Incorporation of MEM into latexes lowered the minimum film formation temperature (MFFT) and also enhanced the extent of film formation. Core-shell latexes displayed higher storage modulus, Young's modulus, tensile strength and hardness compared to homogeneous latexes due to the combination of hard core and the pendent urethane present in the continuous phase (shell).
[Display omitted]
•An urethane methacrylate monomer was synthesized via a non-isocyanate route.•Homogeneous and core-shell latex systems with different urethane functionalities were prepared.•Increasing urethane functionality lowered the MFFT while enhancing the latex performance.•Possible film formation mechanisms were proposed. |
doi_str_mv | 10.1016/j.polymer.2020.123253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628272740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120310788</els_id><sourcerecordid>2628272740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-2be7cbef6b07eb62c38cc10d6783307e4e9b95f54ee83cdc118428f1c1e04e243</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIARcT01O5taViHiDgpu6DpnMiZMyk9RkRuwb-NimtntXB875L8lHyDVnC854ebtZbH2_GzAsgEHagYBCnJAZryuRASz5KZkxJiATdcnPyUWMG8YYFJDPyM-6Q2qd6Sd0Gqk3VFHnXWaj1zvl1Ih0Cjh2yiEdvPOpJcnpmFzG9gM1PgxqtN5R5Vo6oE5Kq1VPt8FvMYwW4z6084P_QId-in9C7QNmscO-p33q-MZ4Sc6M6iNeHeecvD89rh9estXb8-vD_SrTORNjBg1WukFTNqzCpgQtaq05a8uqFiKtclw2y8IUOWItdKs5r3OoDdccWY6Qizm5OeSmB35OGEe58VNwqVJCCTVUUKWiOSkOKh18jAGN3AY7qLCTnMk9dLmRR-hyD10eoCff3cGH6QtfNl2jtnuyrQ2oR9l6-0_CLyGJkGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628272740</pqid></control><display><type>article</type><title>The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes</title><source>Elsevier ScienceDirect Journals</source><creator>Cobaj, Anisa ; Mehr, Hamideh S. ; Hu, Yongan ; Soucek, Mark D.</creator><creatorcontrib>Cobaj, Anisa ; Mehr, Hamideh S. ; Hu, Yongan ; Soucek, Mark D.</creatorcontrib><description>A urethane methacrylate monomer, 2-((methylcarbamoyl)oxy)ethyl methacrylate, (MEM), was synthesized via a non-isocyanate pathway and incorporated into latexes using a semi-continuous emulsion polymerization. Homogeneous and core-shell latexes were prepared using MEM, methyl methacrylate (MMA) and butyl acrylate (BA). Narrow particle size distribution and high conversion was achieved for all latexes. Core-shell structure was corroborated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and transmission electron microscopy (TEM). Thermal properties, viscoelastic, mechanical properties and morphology were evaluated and compared as a function of increasing concentration of the urethane methacrylate monomer. Enhanced viscoelastic and mechanical properties were obtained with higher MEM content in both homogeneous and core-shell latexes. Incorporation of MEM into latexes lowered the minimum film formation temperature (MFFT) and also enhanced the extent of film formation. Core-shell latexes displayed higher storage modulus, Young's modulus, tensile strength and hardness compared to homogeneous latexes due to the combination of hard core and the pendent urethane present in the continuous phase (shell).
[Display omitted]
•An urethane methacrylate monomer was synthesized via a non-isocyanate route.•Homogeneous and core-shell latex systems with different urethane functionalities were prepared.•Increasing urethane functionality lowered the MFFT while enhancing the latex performance.•Possible film formation mechanisms were proposed.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123253</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acrylate ; Acrylics ; Calorimetry ; Core-shell structure ; Differential scanning calorimetry ; Emulsion polymerization ; Ethyl carbamate ; Isocyanates ; Latexes ; Mechanical properties ; Modulus of elasticity ; Monomers ; Morphology ; Non-isocyanate ; Particle size distribution ; Polymethyl methacrylate ; Size distribution ; Storage modulus ; Tensile strength ; Thermal analysis ; Thermal properties ; Thermodynamic properties ; Transmission electron microscopy ; Urethane ; Viscoelasticity</subject><ispartof>Polymer (Guilford), 2021-02, Vol.214, p.123253, Article 123253</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-2be7cbef6b07eb62c38cc10d6783307e4e9b95f54ee83cdc118428f1c1e04e243</citedby><cites>FETCH-LOGICAL-c403t-2be7cbef6b07eb62c38cc10d6783307e4e9b95f54ee83cdc118428f1c1e04e243</cites><orcidid>0000-0002-9021-3311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386120310788$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cobaj, Anisa</creatorcontrib><creatorcontrib>Mehr, Hamideh S.</creatorcontrib><creatorcontrib>Hu, Yongan</creatorcontrib><creatorcontrib>Soucek, Mark D.</creatorcontrib><title>The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes</title><title>Polymer (Guilford)</title><description>A urethane methacrylate monomer, 2-((methylcarbamoyl)oxy)ethyl methacrylate, (MEM), was synthesized via a non-isocyanate pathway and incorporated into latexes using a semi-continuous emulsion polymerization. Homogeneous and core-shell latexes were prepared using MEM, methyl methacrylate (MMA) and butyl acrylate (BA). Narrow particle size distribution and high conversion was achieved for all latexes. Core-shell structure was corroborated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and transmission electron microscopy (TEM). Thermal properties, viscoelastic, mechanical properties and morphology were evaluated and compared as a function of increasing concentration of the urethane methacrylate monomer. Enhanced viscoelastic and mechanical properties were obtained with higher MEM content in both homogeneous and core-shell latexes. Incorporation of MEM into latexes lowered the minimum film formation temperature (MFFT) and also enhanced the extent of film formation. Core-shell latexes displayed higher storage modulus, Young's modulus, tensile strength and hardness compared to homogeneous latexes due to the combination of hard core and the pendent urethane present in the continuous phase (shell).
[Display omitted]
•An urethane methacrylate monomer was synthesized via a non-isocyanate route.•Homogeneous and core-shell latex systems with different urethane functionalities were prepared.•Increasing urethane functionality lowered the MFFT while enhancing the latex performance.•Possible film formation mechanisms were proposed.</description><subject>Acrylate</subject><subject>Acrylics</subject><subject>Calorimetry</subject><subject>Core-shell structure</subject><subject>Differential scanning calorimetry</subject><subject>Emulsion polymerization</subject><subject>Ethyl carbamate</subject><subject>Isocyanates</subject><subject>Latexes</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Non-isocyanate</subject><subject>Particle size distribution</subject><subject>Polymethyl methacrylate</subject><subject>Size distribution</subject><subject>Storage modulus</subject><subject>Tensile strength</subject><subject>Thermal analysis</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Transmission electron microscopy</subject><subject>Urethane</subject><subject>Viscoelasticity</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIARcT01O5taViHiDgpu6DpnMiZMyk9RkRuwb-NimtntXB875L8lHyDVnC854ebtZbH2_GzAsgEHagYBCnJAZryuRASz5KZkxJiATdcnPyUWMG8YYFJDPyM-6Q2qd6Sd0Gqk3VFHnXWaj1zvl1Ih0Cjh2yiEdvPOpJcnpmFzG9gM1PgxqtN5R5Vo6oE5Kq1VPt8FvMYwW4z6084P_QId-in9C7QNmscO-p33q-MZ4Sc6M6iNeHeecvD89rh9estXb8-vD_SrTORNjBg1WukFTNqzCpgQtaq05a8uqFiKtclw2y8IUOWItdKs5r3OoDdccWY6Qizm5OeSmB35OGEe58VNwqVJCCTVUUKWiOSkOKh18jAGN3AY7qLCTnMk9dLmRR-hyD10eoCff3cGH6QtfNl2jtnuyrQ2oR9l6-0_CLyGJkGo</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cobaj, Anisa</creator><creator>Mehr, Hamideh S.</creator><creator>Hu, Yongan</creator><creator>Soucek, Mark D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9021-3311</orcidid></search><sort><creationdate>20210201</creationdate><title>The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes</title><author>Cobaj, Anisa ; Mehr, Hamideh S. ; Hu, Yongan ; Soucek, Mark D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-2be7cbef6b07eb62c38cc10d6783307e4e9b95f54ee83cdc118428f1c1e04e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylate</topic><topic>Acrylics</topic><topic>Calorimetry</topic><topic>Core-shell structure</topic><topic>Differential scanning calorimetry</topic><topic>Emulsion polymerization</topic><topic>Ethyl carbamate</topic><topic>Isocyanates</topic><topic>Latexes</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Non-isocyanate</topic><topic>Particle size distribution</topic><topic>Polymethyl methacrylate</topic><topic>Size distribution</topic><topic>Storage modulus</topic><topic>Tensile strength</topic><topic>Thermal analysis</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Transmission electron microscopy</topic><topic>Urethane</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobaj, Anisa</creatorcontrib><creatorcontrib>Mehr, Hamideh S.</creatorcontrib><creatorcontrib>Hu, Yongan</creatorcontrib><creatorcontrib>Soucek, Mark D.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobaj, Anisa</au><au>Mehr, Hamideh S.</au><au>Hu, Yongan</au><au>Soucek, Mark D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>214</volume><spage>123253</spage><pages>123253-</pages><artnum>123253</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>A urethane methacrylate monomer, 2-((methylcarbamoyl)oxy)ethyl methacrylate, (MEM), was synthesized via a non-isocyanate pathway and incorporated into latexes using a semi-continuous emulsion polymerization. Homogeneous and core-shell latexes were prepared using MEM, methyl methacrylate (MMA) and butyl acrylate (BA). Narrow particle size distribution and high conversion was achieved for all latexes. Core-shell structure was corroborated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and transmission electron microscopy (TEM). Thermal properties, viscoelastic, mechanical properties and morphology were evaluated and compared as a function of increasing concentration of the urethane methacrylate monomer. Enhanced viscoelastic and mechanical properties were obtained with higher MEM content in both homogeneous and core-shell latexes. Incorporation of MEM into latexes lowered the minimum film formation temperature (MFFT) and also enhanced the extent of film formation. Core-shell latexes displayed higher storage modulus, Young's modulus, tensile strength and hardness compared to homogeneous latexes due to the combination of hard core and the pendent urethane present in the continuous phase (shell).
[Display omitted]
•An urethane methacrylate monomer was synthesized via a non-isocyanate route.•Homogeneous and core-shell latex systems with different urethane functionalities were prepared.•Increasing urethane functionality lowered the MFFT while enhancing the latex performance.•Possible film formation mechanisms were proposed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123253</doi><orcidid>https://orcid.org/0000-0002-9021-3311</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-02, Vol.214, p.123253, Article 123253 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2628272740 |
source | Elsevier ScienceDirect Journals |
subjects | Acrylate Acrylics Calorimetry Core-shell structure Differential scanning calorimetry Emulsion polymerization Ethyl carbamate Isocyanates Latexes Mechanical properties Modulus of elasticity Monomers Morphology Non-isocyanate Particle size distribution Polymethyl methacrylate Size distribution Storage modulus Tensile strength Thermal analysis Thermal properties Thermodynamic properties Transmission electron microscopy Urethane Viscoelasticity |
title | The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20a%20non-isocyanate%20urethane%20monomer%20in%20the%20film%20formation%20and%20mechanical%20properties%20of%20homogeneous%20and%20core-shell%20latexes&rft.jtitle=Polymer%20(Guilford)&rft.au=Cobaj,%20Anisa&rft.date=2021-02-01&rft.volume=214&rft.spage=123253&rft.pages=123253-&rft.artnum=123253&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123253&rft_dat=%3Cproquest_cross%3E2628272740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628272740&rft_id=info:pmid/&rft_els_id=S0032386120310788&rfr_iscdi=true |