Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior

Electrospinning of polymer solutions is a multifaceted process that depends on the careful balancing of many parameters to achieve a desired outcome, in many cases including mixtures of multiple solvents. A systematic study of how the solution viscosity η$\eta $—a good probe of solvent–polymer inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2022-02, Vol.307 (2), p.n/a
Hauptverfasser: Vats, Shameek, Honaker, Lawrence W., Frey, Margaret W., Basoli, Francesco, Lagerwall, Jan P.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Macromolecular materials and engineering
container_volume 307
creator Vats, Shameek
Honaker, Lawrence W.
Frey, Margaret W.
Basoli, Francesco
Lagerwall, Jan P.F.
description Electrospinning of polymer solutions is a multifaceted process that depends on the careful balancing of many parameters to achieve a desired outcome, in many cases including mixtures of multiple solvents. A systematic study of how the solution viscosity η$\eta $—a good probe of solvent–polymer interactions—and the electrospinnability change when poly(acrylic acid) (PAA) is dissolved in ethanol–water mixtures at varying mixing ratio is carried out. A pronounced maximum is found in η$\eta $ at a water‐to‐ethanol molar ratio of about 2:1, where the solvent mixture deviates maximally from ideal mixing behavior and partial deprotonation of carboxyl groups by water coincides synergistically with dissolution of the uncharged protonated PAA fraction by ethanol. The PAA concentration is tuned as a function of water–ethanol ratio to obtain a common value of η$\eta $ for all solvent mixtures that is suitable for electrospinning. For high PAA content, the Taylor cone grows in volume over time despite minimum solution flow rate, even experiencing surface gelation for ethanol‐rich solutions. This is attributed to the hygroscopic nature of PAA, drawing excess water into the Taylor cone from the air during spinning. When electrospinning solutions of poly(acrylic acid) (PAA) in mixtures of water and ethanol, both the Taylor cone behavior and the final fiber morphology vary nonlinearily with water–ethanol ratio. Viscosity measurements indicate maximally poor solvent quality at 2:1 molar ratio, further complications arising from water condensation driven by cooling as ethanol evaporates and by the hygroscopic nature of PAA.
doi_str_mv 10.1002/mame.202100640
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628264686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628264686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-f72d46984c8eccfaaa13dfe6ed478b25fbd3509b346b654339e1b5725045d9a03</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEqWwMltigSHFsR0nYQslXKRykShljBzHoa4cu9gpKFvfgTfkSUgJgpHp_Ef6v3Okz_MOAzgKIESnNavFCEHULZTALW8QEJz4CIZk-zvHfkQStOvtObeAMIjiBA-8daYEb6xxS6m11C8ga-ZMG_W5_nhmjbDg0ahVI412wFTgwaj2OOW2VZKDlMvy5AzcGa2kFsyCmXTcONm0YMasZD3FdAkuWs3qjpiyVhkLxkYLcC7m7E0au-_tVEw5cfAzh97TZTYdX_uT-6ubcTrxOQ4j6FcRKglNYsJjwXnFGAtwWQkqShLFBQqrosQhTApMaEFDgnEigiKMUAhJWCYM4qF31N9dWvO6Eq7JF2ZldfcyRxTFiBIa06416lu8U-KsqPKllTWzbR7AfGM531jOfy13QNID71KJ9p92fpveZn_sF_zPg5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628264686</pqid></control><display><type>article</type><title>Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vats, Shameek ; Honaker, Lawrence W. ; Frey, Margaret W. ; Basoli, Francesco ; Lagerwall, Jan P.F.</creator><creatorcontrib>Vats, Shameek ; Honaker, Lawrence W. ; Frey, Margaret W. ; Basoli, Francesco ; Lagerwall, Jan P.F.</creatorcontrib><description>Electrospinning of polymer solutions is a multifaceted process that depends on the careful balancing of many parameters to achieve a desired outcome, in many cases including mixtures of multiple solvents. A systematic study of how the solution viscosity η$\eta $—a good probe of solvent–polymer interactions—and the electrospinnability change when poly(acrylic acid) (PAA) is dissolved in ethanol–water mixtures at varying mixing ratio is carried out. A pronounced maximum is found in η$\eta $ at a water‐to‐ethanol molar ratio of about 2:1, where the solvent mixture deviates maximally from ideal mixing behavior and partial deprotonation of carboxyl groups by water coincides synergistically with dissolution of the uncharged protonated PAA fraction by ethanol. The PAA concentration is tuned as a function of water–ethanol ratio to obtain a common value of η$\eta $ for all solvent mixtures that is suitable for electrospinning. For high PAA content, the Taylor cone grows in volume over time despite minimum solution flow rate, even experiencing surface gelation for ethanol‐rich solutions. This is attributed to the hygroscopic nature of PAA, drawing excess water into the Taylor cone from the air during spinning. When electrospinning solutions of poly(acrylic acid) (PAA) in mixtures of water and ethanol, both the Taylor cone behavior and the final fiber morphology vary nonlinearily with water–ethanol ratio. Viscosity measurements indicate maximally poor solvent quality at 2:1 molar ratio, further complications arising from water condensation driven by cooling as ethanol evaporates and by the hygroscopic nature of PAA.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.202100640</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Electrospinning ; Ethanol ; Flow velocity ; Ions ; Mixing ratio ; poly(acrylic acid) ; Polyacrylic acid ; Polymers ; Solvents ; Viscosity ; water</subject><ispartof>Macromolecular materials and engineering, 2022-02, Vol.307 (2), p.n/a</ispartof><rights>2021 The Authors. Macromolecular Materials and Engineering published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-f72d46984c8eccfaaa13dfe6ed478b25fbd3509b346b654339e1b5725045d9a03</citedby><cites>FETCH-LOGICAL-c3570-f72d46984c8eccfaaa13dfe6ed478b25fbd3509b346b654339e1b5725045d9a03</cites><orcidid>0000-0001-9753-1147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.202100640$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.202100640$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vats, Shameek</creatorcontrib><creatorcontrib>Honaker, Lawrence W.</creatorcontrib><creatorcontrib>Frey, Margaret W.</creatorcontrib><creatorcontrib>Basoli, Francesco</creatorcontrib><creatorcontrib>Lagerwall, Jan P.F.</creatorcontrib><title>Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior</title><title>Macromolecular materials and engineering</title><description>Electrospinning of polymer solutions is a multifaceted process that depends on the careful balancing of many parameters to achieve a desired outcome, in many cases including mixtures of multiple solvents. A systematic study of how the solution viscosity η$\eta $—a good probe of solvent–polymer interactions—and the electrospinnability change when poly(acrylic acid) (PAA) is dissolved in ethanol–water mixtures at varying mixing ratio is carried out. A pronounced maximum is found in η$\eta $ at a water‐to‐ethanol molar ratio of about 2:1, where the solvent mixture deviates maximally from ideal mixing behavior and partial deprotonation of carboxyl groups by water coincides synergistically with dissolution of the uncharged protonated PAA fraction by ethanol. The PAA concentration is tuned as a function of water–ethanol ratio to obtain a common value of η$\eta $ for all solvent mixtures that is suitable for electrospinning. For high PAA content, the Taylor cone grows in volume over time despite minimum solution flow rate, even experiencing surface gelation for ethanol‐rich solutions. This is attributed to the hygroscopic nature of PAA, drawing excess water into the Taylor cone from the air during spinning. When electrospinning solutions of poly(acrylic acid) (PAA) in mixtures of water and ethanol, both the Taylor cone behavior and the final fiber morphology vary nonlinearily with water–ethanol ratio. Viscosity measurements indicate maximally poor solvent quality at 2:1 molar ratio, further complications arising from water condensation driven by cooling as ethanol evaporates and by the hygroscopic nature of PAA.</description><subject>Electrospinning</subject><subject>Ethanol</subject><subject>Flow velocity</subject><subject>Ions</subject><subject>Mixing ratio</subject><subject>poly(acrylic acid)</subject><subject>Polyacrylic acid</subject><subject>Polymers</subject><subject>Solvents</subject><subject>Viscosity</subject><subject>water</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhiMEEqWwMltigSHFsR0nYQslXKRykShljBzHoa4cu9gpKFvfgTfkSUgJgpHp_Ef6v3Okz_MOAzgKIESnNavFCEHULZTALW8QEJz4CIZk-zvHfkQStOvtObeAMIjiBA-8daYEb6xxS6m11C8ga-ZMG_W5_nhmjbDg0ahVI412wFTgwaj2OOW2VZKDlMvy5AzcGa2kFsyCmXTcONm0YMasZD3FdAkuWs3qjpiyVhkLxkYLcC7m7E0au-_tVEw5cfAzh97TZTYdX_uT-6ubcTrxOQ4j6FcRKglNYsJjwXnFGAtwWQkqShLFBQqrosQhTApMaEFDgnEigiKMUAhJWCYM4qF31N9dWvO6Eq7JF2ZldfcyRxTFiBIa06416lu8U-KsqPKllTWzbR7AfGM531jOfy13QNID71KJ9p92fpveZn_sF_zPg5I</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Vats, Shameek</creator><creator>Honaker, Lawrence W.</creator><creator>Frey, Margaret W.</creator><creator>Basoli, Francesco</creator><creator>Lagerwall, Jan P.F.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9753-1147</orcidid></search><sort><creationdate>202202</creationdate><title>Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior</title><author>Vats, Shameek ; Honaker, Lawrence W. ; Frey, Margaret W. ; Basoli, Francesco ; Lagerwall, Jan P.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-f72d46984c8eccfaaa13dfe6ed478b25fbd3509b346b654339e1b5725045d9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electrospinning</topic><topic>Ethanol</topic><topic>Flow velocity</topic><topic>Ions</topic><topic>Mixing ratio</topic><topic>poly(acrylic acid)</topic><topic>Polyacrylic acid</topic><topic>Polymers</topic><topic>Solvents</topic><topic>Viscosity</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vats, Shameek</creatorcontrib><creatorcontrib>Honaker, Lawrence W.</creatorcontrib><creatorcontrib>Frey, Margaret W.</creatorcontrib><creatorcontrib>Basoli, Francesco</creatorcontrib><creatorcontrib>Lagerwall, Jan P.F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vats, Shameek</au><au>Honaker, Lawrence W.</au><au>Frey, Margaret W.</au><au>Basoli, Francesco</au><au>Lagerwall, Jan P.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2022-02</date><risdate>2022</risdate><volume>307</volume><issue>2</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Electrospinning of polymer solutions is a multifaceted process that depends on the careful balancing of many parameters to achieve a desired outcome, in many cases including mixtures of multiple solvents. A systematic study of how the solution viscosity η$\eta $—a good probe of solvent–polymer interactions—and the electrospinnability change when poly(acrylic acid) (PAA) is dissolved in ethanol–water mixtures at varying mixing ratio is carried out. A pronounced maximum is found in η$\eta $ at a water‐to‐ethanol molar ratio of about 2:1, where the solvent mixture deviates maximally from ideal mixing behavior and partial deprotonation of carboxyl groups by water coincides synergistically with dissolution of the uncharged protonated PAA fraction by ethanol. The PAA concentration is tuned as a function of water–ethanol ratio to obtain a common value of η$\eta $ for all solvent mixtures that is suitable for electrospinning. For high PAA content, the Taylor cone grows in volume over time despite minimum solution flow rate, even experiencing surface gelation for ethanol‐rich solutions. This is attributed to the hygroscopic nature of PAA, drawing excess water into the Taylor cone from the air during spinning. When electrospinning solutions of poly(acrylic acid) (PAA) in mixtures of water and ethanol, both the Taylor cone behavior and the final fiber morphology vary nonlinearily with water–ethanol ratio. Viscosity measurements indicate maximally poor solvent quality at 2:1 molar ratio, further complications arising from water condensation driven by cooling as ethanol evaporates and by the hygroscopic nature of PAA.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mame.202100640</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9753-1147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2022-02, Vol.307 (2), p.n/a
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_journals_2628264686
source Wiley Online Library Journals Frontfile Complete
subjects Electrospinning
Ethanol
Flow velocity
Ions
Mixing ratio
poly(acrylic acid)
Polyacrylic acid
Polymers
Solvents
Viscosity
water
title Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20Ethanol%E2%80%93Water%20Solutions%20of%20Poly(Acrylic%20Acid):%20Nonlinear%20Viscosity%20Variations%20and%20Dynamic%20Taylor%20Cone%20Behavior&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Vats,%20Shameek&rft.date=2022-02&rft.volume=307&rft.issue=2&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.202100640&rft_dat=%3Cproquest_cross%3E2628264686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628264686&rft_id=info:pmid/&rfr_iscdi=true