Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy

•Atomistic simulations and mechanistic model capture experimentally found extra strain-rate and temperature sensitivity in random alloys.•Unique features of heterogeneous dislocation pathways are revealed.•Small activation volume and high entropy rationalize the extra strain-rate sensitivity and ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2022-02, Vol.149, p.103155, Article 103155
Hauptverfasser: Dai, Shi-Cheng, Xie, Zhou-Can, Wang, Yun-Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103155
container_title International journal of plasticity
container_volume 149
creator Dai, Shi-Cheng
Xie, Zhou-Can
Wang, Yun-Jiang
description •Atomistic simulations and mechanistic model capture experimentally found extra strain-rate and temperature sensitivity in random alloys.•Unique features of heterogeneous dislocation pathways are revealed.•Small activation volume and high entropy rationalize the extra strain-rate sensitivity and extra thermal softening.•Configurational entropy dominates over vibrational counterpart in heterogeneous dislocation nucleation. Incipient plasticity of crystals is usually initiated from versatile pre-existing crystalline defects of different geometries and length scales that formed during materials fabrication and processing, which is closely associated with the mechanical properties. Here we study the heterogeneous dislocation nucleation behaviors from an existing nanoscale void embedded in a prototypical multi-principal-element (MPE) NiCoCr alloy via atomistical exploration of possible minimum energy pathways and analyzes of the dislocation kinetics by a continuum-level mechanistic model, in comparison with the same plastic mechanism in an elemental face-centered cubic copper. It is found that the rough nucleation pathway of dislocation brings about extra thermal softening and strain-rate sensitivity for the critical nucleation stress of dislocation in the MPE alloy, which reproduces the experimental observations. The extra temperature softening is revealed to be associated with the high total entropy of the MPE alloy, in which the configurational entropy plays a dominating role rather than the vibrational counterpart. The extra strain rate sensitivity is caused by the relatively small activation volume in MPE alloy. Our strategy offers physical understanding of the experimental phenomena with atomistic details, which also emphasizes the critical role of configurational disorder in the dislocation accommodated plasticity in the generic complex concentrated alloys. [Display omitted]
doi_str_mv 10.1016/j.ijplas.2021.103155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627992330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641921002229</els_id><sourcerecordid>2627992330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-8a85f62bc1f6ff9f6b34dcacad13a09504e93d5fc9aec1094188e2e00e9a118e3</originalsourceid><addsrcrecordid>eNp9kM-K2zAQxkXZhWb_vEEPgj07lWzZsS4LIbTbhcBe2rNQ5NF2jCy5khya9-gDV8E99zTDx3zfzPwI-cTZljPefR63OM5Op23Nal6khrftB7Lh_U5WNW_FDdmwnZBVJ7j8SO5SGhljbd_wDfmzz2HClNFQ9BniHCHrjMHTYCn8zlHTDNMMUeclAtV-oKmI6KuiAE3gE2Y8Y75cDT-hRIR38BCWRAdMLpg1zS_Gwdqip5pOi8tYzRG9wVm7ChxM4DPVzoXLA7m12iV4_FfvyY-vX74fvlXHt5fXw_5YGSG6XPW6b21Xnwy3nbXSdqdGDEYbPfBGM9kyAbIZWmukBsOZFLzvoQbGQGrOe2juydOaO8fwa4GU1RiW6MtKVXf1Tsq6aViZEuuUiSGlCFaVsycdL4ozdeWvRrXyV1f-auVfbM-rDcoHZ4SokkHwBgaMYLIaAv4_4C_EVpWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627992330</pqid></control><display><type>article</type><title>Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dai, Shi-Cheng ; Xie, Zhou-Can ; Wang, Yun-Jiang</creator><creatorcontrib>Dai, Shi-Cheng ; Xie, Zhou-Can ; Wang, Yun-Jiang</creatorcontrib><description>•Atomistic simulations and mechanistic model capture experimentally found extra strain-rate and temperature sensitivity in random alloys.•Unique features of heterogeneous dislocation pathways are revealed.•Small activation volume and high entropy rationalize the extra strain-rate sensitivity and extra thermal softening.•Configurational entropy dominates over vibrational counterpart in heterogeneous dislocation nucleation. Incipient plasticity of crystals is usually initiated from versatile pre-existing crystalline defects of different geometries and length scales that formed during materials fabrication and processing, which is closely associated with the mechanical properties. Here we study the heterogeneous dislocation nucleation behaviors from an existing nanoscale void embedded in a prototypical multi-principal-element (MPE) NiCoCr alloy via atomistical exploration of possible minimum energy pathways and analyzes of the dislocation kinetics by a continuum-level mechanistic model, in comparison with the same plastic mechanism in an elemental face-centered cubic copper. It is found that the rough nucleation pathway of dislocation brings about extra thermal softening and strain-rate sensitivity for the critical nucleation stress of dislocation in the MPE alloy, which reproduces the experimental observations. The extra temperature softening is revealed to be associated with the high total entropy of the MPE alloy, in which the configurational entropy plays a dominating role rather than the vibrational counterpart. The extra strain rate sensitivity is caused by the relatively small activation volume in MPE alloy. Our strategy offers physical understanding of the experimental phenomena with atomistic details, which also emphasizes the critical role of configurational disorder in the dislocation accommodated plasticity in the generic complex concentrated alloys. [Display omitted]</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2021.103155</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Alloying elements ; Alloys ; Crystal defects ; Dislocation nucleation ; Entropy ; Mechanical properties ; Minimum energy pathway ; Molecular dynamics ; Multi-principal-element alloy ; Nucleation ; Plastic properties ; Rate and temperature sensitivity ; Softening ; Strain rate sensitivity</subject><ispartof>International journal of plasticity, 2022-02, Vol.149, p.103155, Article 103155</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-8a85f62bc1f6ff9f6b34dcacad13a09504e93d5fc9aec1094188e2e00e9a118e3</citedby><cites>FETCH-LOGICAL-c446t-8a85f62bc1f6ff9f6b34dcacad13a09504e93d5fc9aec1094188e2e00e9a118e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749641921002229$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dai, Shi-Cheng</creatorcontrib><creatorcontrib>Xie, Zhou-Can</creatorcontrib><creatorcontrib>Wang, Yun-Jiang</creatorcontrib><title>Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy</title><title>International journal of plasticity</title><description>•Atomistic simulations and mechanistic model capture experimentally found extra strain-rate and temperature sensitivity in random alloys.•Unique features of heterogeneous dislocation pathways are revealed.•Small activation volume and high entropy rationalize the extra strain-rate sensitivity and extra thermal softening.•Configurational entropy dominates over vibrational counterpart in heterogeneous dislocation nucleation. Incipient plasticity of crystals is usually initiated from versatile pre-existing crystalline defects of different geometries and length scales that formed during materials fabrication and processing, which is closely associated with the mechanical properties. Here we study the heterogeneous dislocation nucleation behaviors from an existing nanoscale void embedded in a prototypical multi-principal-element (MPE) NiCoCr alloy via atomistical exploration of possible minimum energy pathways and analyzes of the dislocation kinetics by a continuum-level mechanistic model, in comparison with the same plastic mechanism in an elemental face-centered cubic copper. It is found that the rough nucleation pathway of dislocation brings about extra thermal softening and strain-rate sensitivity for the critical nucleation stress of dislocation in the MPE alloy, which reproduces the experimental observations. The extra temperature softening is revealed to be associated with the high total entropy of the MPE alloy, in which the configurational entropy plays a dominating role rather than the vibrational counterpart. The extra strain rate sensitivity is caused by the relatively small activation volume in MPE alloy. Our strategy offers physical understanding of the experimental phenomena with atomistic details, which also emphasizes the critical role of configurational disorder in the dislocation accommodated plasticity in the generic complex concentrated alloys. [Display omitted]</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Crystal defects</subject><subject>Dislocation nucleation</subject><subject>Entropy</subject><subject>Mechanical properties</subject><subject>Minimum energy pathway</subject><subject>Molecular dynamics</subject><subject>Multi-principal-element alloy</subject><subject>Nucleation</subject><subject>Plastic properties</subject><subject>Rate and temperature sensitivity</subject><subject>Softening</subject><subject>Strain rate sensitivity</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM-K2zAQxkXZhWb_vEEPgj07lWzZsS4LIbTbhcBe2rNQ5NF2jCy5khya9-gDV8E99zTDx3zfzPwI-cTZljPefR63OM5Op23Nal6khrftB7Lh_U5WNW_FDdmwnZBVJ7j8SO5SGhljbd_wDfmzz2HClNFQ9BniHCHrjMHTYCn8zlHTDNMMUeclAtV-oKmI6KuiAE3gE2Y8Y75cDT-hRIR38BCWRAdMLpg1zS_Gwdqip5pOi8tYzRG9wVm7ChxM4DPVzoXLA7m12iV4_FfvyY-vX74fvlXHt5fXw_5YGSG6XPW6b21Xnwy3nbXSdqdGDEYbPfBGM9kyAbIZWmukBsOZFLzvoQbGQGrOe2juydOaO8fwa4GU1RiW6MtKVXf1Tsq6aViZEuuUiSGlCFaVsycdL4ozdeWvRrXyV1f-auVfbM-rDcoHZ4SokkHwBgaMYLIaAv4_4C_EVpWo</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Dai, Shi-Cheng</creator><creator>Xie, Zhou-Can</creator><creator>Wang, Yun-Jiang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202202</creationdate><title>Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy</title><author>Dai, Shi-Cheng ; Xie, Zhou-Can ; Wang, Yun-Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-8a85f62bc1f6ff9f6b34dcacad13a09504e93d5fc9aec1094188e2e00e9a118e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Crystal defects</topic><topic>Dislocation nucleation</topic><topic>Entropy</topic><topic>Mechanical properties</topic><topic>Minimum energy pathway</topic><topic>Molecular dynamics</topic><topic>Multi-principal-element alloy</topic><topic>Nucleation</topic><topic>Plastic properties</topic><topic>Rate and temperature sensitivity</topic><topic>Softening</topic><topic>Strain rate sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shi-Cheng</creatorcontrib><creatorcontrib>Xie, Zhou-Can</creatorcontrib><creatorcontrib>Wang, Yun-Jiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shi-Cheng</au><au>Xie, Zhou-Can</au><au>Wang, Yun-Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy</atitle><jtitle>International journal of plasticity</jtitle><date>2022-02</date><risdate>2022</risdate><volume>149</volume><spage>103155</spage><pages>103155-</pages><artnum>103155</artnum><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>•Atomistic simulations and mechanistic model capture experimentally found extra strain-rate and temperature sensitivity in random alloys.•Unique features of heterogeneous dislocation pathways are revealed.•Small activation volume and high entropy rationalize the extra strain-rate sensitivity and extra thermal softening.•Configurational entropy dominates over vibrational counterpart in heterogeneous dislocation nucleation. Incipient plasticity of crystals is usually initiated from versatile pre-existing crystalline defects of different geometries and length scales that formed during materials fabrication and processing, which is closely associated with the mechanical properties. Here we study the heterogeneous dislocation nucleation behaviors from an existing nanoscale void embedded in a prototypical multi-principal-element (MPE) NiCoCr alloy via atomistical exploration of possible minimum energy pathways and analyzes of the dislocation kinetics by a continuum-level mechanistic model, in comparison with the same plastic mechanism in an elemental face-centered cubic copper. It is found that the rough nucleation pathway of dislocation brings about extra thermal softening and strain-rate sensitivity for the critical nucleation stress of dislocation in the MPE alloy, which reproduces the experimental observations. The extra temperature softening is revealed to be associated with the high total entropy of the MPE alloy, in which the configurational entropy plays a dominating role rather than the vibrational counterpart. The extra strain rate sensitivity is caused by the relatively small activation volume in MPE alloy. Our strategy offers physical understanding of the experimental phenomena with atomistic details, which also emphasizes the critical role of configurational disorder in the dislocation accommodated plasticity in the generic complex concentrated alloys. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2021.103155</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2022-02, Vol.149, p.103155, Article 103155
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_journals_2627992330
source Elsevier ScienceDirect Journals Complete
subjects Alloying elements
Alloys
Crystal defects
Dislocation nucleation
Entropy
Mechanical properties
Minimum energy pathway
Molecular dynamics
Multi-principal-element alloy
Nucleation
Plastic properties
Rate and temperature sensitivity
Softening
Strain rate sensitivity
title Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20interpretation%20of%20extra%20temperature%20and%20strain-rate%20sensitivity%20of%20heterogeneous%20dislocation%20nucleation%20in%20a%20multi-principal-element%20alloy&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Dai,%20Shi-Cheng&rft.date=2022-02&rft.volume=149&rft.spage=103155&rft.pages=103155-&rft.artnum=103155&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2021.103155&rft_dat=%3Cproquest_cross%3E2627992330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627992330&rft_id=info:pmid/&rft_els_id=S0749641921002229&rfr_iscdi=true