Multi-agent deep reinforcement learning: a survey

The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2022-02, Vol.55 (2), p.895-943
Hauptverfasser: Gronauer, Sven, Diepold, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 943
container_issue 2
container_start_page 895
container_title The Artificial intelligence review
container_volume 55
creator Gronauer, Sven
Diepold, Klaus
description The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problems with real-world complexity. This article provides an overview of the current developments in the field of multi-agent deep reinforcement learning. We focus primarily on literature from recent years that combines deep reinforcement learning methods with a multi-agent scenario. To survey the works that constitute the contemporary landscape, the main contents are divided into three parts. First, we analyze the structure of training schemes that are applied to train multiple agents. Second, we consider the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. Third, we systematically enumerate challenges that exclusively arise in the multi-agent domain and review methods that are leveraged to cope with these challenges. To conclude this survey, we discuss advances, identify trends, and outline possible directions for future work in this research area.
doi_str_mv 10.1007/s10462-021-09996-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2627874073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706373926</galeid><sourcerecordid>A706373926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-958f19d4728ca71c4d1fc76ff381eaf54bcb7e6ea4ff9bcc09df65123c3afa2e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wNWA69S8Jpm4K8UXVNzoOqSZm2HKNFOTGUv_vakjuJO7uHA4372Hg9ANJXNKiLpLlAjJMGEUE621xPsTNKOl4lhl_RTNCJMas4rRc3SR0oYQUjLBZ4i-jt3QYttAGIoaYFdEaIPvo4PtUerAxtCG5r6wRRrjFxyu0Jm3XYLr332JPh4f3pfPePX29LJcrLAThA1Yl5WnuhaKVc4q6kRNvVPSe15RsL4Ua7dWIMEK7_XaOaJrL0vKuOPWWwb8Et1Od3ex_xwhDWbTjzHkl4ZJpioliOLZNZ9cje3AHJMP0bo8NWxb1wfwbdYXikiuuGYyA2wCXOxTiuDNLrZbGw-GEnPs0kxdmtyl-enS7DPEJyhlc2gg_mX5h_oGmkp3bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627874073</pqid></control><display><type>article</type><title>Multi-agent deep reinforcement learning: a survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gronauer, Sven ; Diepold, Klaus</creator><creatorcontrib>Gronauer, Sven ; Diepold, Klaus</creatorcontrib><description>The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problems with real-world complexity. This article provides an overview of the current developments in the field of multi-agent deep reinforcement learning. We focus primarily on literature from recent years that combines deep reinforcement learning methods with a multi-agent scenario. To survey the works that constitute the contemporary landscape, the main contents are divided into three parts. First, we analyze the structure of training schemes that are applied to train multiple agents. Second, we consider the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. Third, we systematically enumerate challenges that exclusively arise in the multi-agent domain and review methods that are leveraged to cope with these challenges. To conclude this survey, we discuss advances, identify trends, and outline possible directions for future work in this research area.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-021-09996-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computer Science ; Deep learning ; Domains ; Multiagent systems</subject><ispartof>The Artificial intelligence review, 2022-02, Vol.55 (2), p.895-943</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-958f19d4728ca71c4d1fc76ff381eaf54bcb7e6ea4ff9bcc09df65123c3afa2e3</citedby><cites>FETCH-LOGICAL-c402t-958f19d4728ca71c4d1fc76ff381eaf54bcb7e6ea4ff9bcc09df65123c3afa2e3</cites><orcidid>0000-0002-0047-5116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-021-09996-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-021-09996-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gronauer, Sven</creatorcontrib><creatorcontrib>Diepold, Klaus</creatorcontrib><title>Multi-agent deep reinforcement learning: a survey</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problems with real-world complexity. This article provides an overview of the current developments in the field of multi-agent deep reinforcement learning. We focus primarily on literature from recent years that combines deep reinforcement learning methods with a multi-agent scenario. To survey the works that constitute the contemporary landscape, the main contents are divided into three parts. First, we analyze the structure of training schemes that are applied to train multiple agents. Second, we consider the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. Third, we systematically enumerate challenges that exclusively arise in the multi-agent domain and review methods that are leveraged to cope with these challenges. To conclude this survey, we discuss advances, identify trends, and outline possible directions for future work in this research area.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Multiagent systems</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_wNWA69S8Jpm4K8UXVNzoOqSZm2HKNFOTGUv_vakjuJO7uHA4372Hg9ANJXNKiLpLlAjJMGEUE621xPsTNKOl4lhl_RTNCJMas4rRc3SR0oYQUjLBZ4i-jt3QYttAGIoaYFdEaIPvo4PtUerAxtCG5r6wRRrjFxyu0Jm3XYLr332JPh4f3pfPePX29LJcrLAThA1Yl5WnuhaKVc4q6kRNvVPSe15RsL4Ua7dWIMEK7_XaOaJrL0vKuOPWWwb8Et1Od3ex_xwhDWbTjzHkl4ZJpioliOLZNZ9cje3AHJMP0bo8NWxb1wfwbdYXikiuuGYyA2wCXOxTiuDNLrZbGw-GEnPs0kxdmtyl-enS7DPEJyhlc2gg_mX5h_oGmkp3bQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gronauer, Sven</creator><creator>Diepold, Klaus</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0047-5116</orcidid></search><sort><creationdate>20220201</creationdate><title>Multi-agent deep reinforcement learning: a survey</title><author>Gronauer, Sven ; Diepold, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-958f19d4728ca71c4d1fc76ff381eaf54bcb7e6ea4ff9bcc09df65123c3afa2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Multiagent systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gronauer, Sven</creatorcontrib><creatorcontrib>Diepold, Klaus</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gronauer, Sven</au><au>Diepold, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-agent deep reinforcement learning: a survey</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>55</volume><issue>2</issue><spage>895</spage><epage>943</epage><pages>895-943</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problems with real-world complexity. This article provides an overview of the current developments in the field of multi-agent deep reinforcement learning. We focus primarily on literature from recent years that combines deep reinforcement learning methods with a multi-agent scenario. To survey the works that constitute the contemporary landscape, the main contents are divided into three parts. First, we analyze the structure of training schemes that are applied to train multiple agents. Second, we consider the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. Third, we systematically enumerate challenges that exclusively arise in the multi-agent domain and review methods that are leveraged to cope with these challenges. To conclude this survey, we discuss advances, identify trends, and outline possible directions for future work in this research area.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-021-09996-w</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0002-0047-5116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 2022-02, Vol.55 (2), p.895-943
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_2627874073
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Deep learning
Domains
Multiagent systems
title Multi-agent deep reinforcement learning: a survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-agent%20deep%20reinforcement%20learning:%20a%20survey&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Gronauer,%20Sven&rft.date=2022-02-01&rft.volume=55&rft.issue=2&rft.spage=895&rft.epage=943&rft.pages=895-943&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-021-09996-w&rft_dat=%3Cgale_proqu%3EA706373926%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627874073&rft_id=info:pmid/&rft_galeid=A706373926&rfr_iscdi=true