TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry
New experiments to study titanium solubility in quartz were conducted at conditions not previously explored to extend and improve existing Ti-in-quartz solubility models for thermobarometric applications. Starting materials for experiments included silica glass, anatase, synthetic and natural rutile...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2022-03, Vol.177 (3), Article 31 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Contributions to mineralogy and petrology |
container_volume | 177 |
creator | Osborne, Zach R. Thomas, Jay B. Nachlas, William O. Angel, Ross J. Hoff, Christopher M. Watson, E. Bruce |
description | New experiments to study titanium solubility in quartz were conducted at conditions not previously explored to extend and improve existing Ti-in-quartz solubility models for thermobarometric applications. Starting materials for experiments included silica glass, anatase, synthetic and natural rutile, Ti-enriched silica gel, Ti-enriched melts, zirconia, and HF and H
2
O fluids. Additional experimental data enabled us to characterize Ti-in-quartz solubility across much of the α- and β-quartz stability fields from 2 to 30 kbar and 550 to 1050 °C. Mutual occurrences of mineral inclusions in one another and Raman spectroscopy of mineral phases confirmed co-crystallization of quartz, rutile, and zircon. Electron microprobe measurements and cathodoluminescence images show that Ti concentrations in quartz crystals from all experiments are relatively uniform, and Ti concentrations of quartz crystals grown at the same experimental conditions using several Ti–rich starting materials and several different growth media are the same within experimental and analytical uncertainties. There are no significant differences in Ti concentrations of quartz across the α–β quartz transition. The Ti concentration in quartz crystals,
X
TiO
2
quartz
, systematically increases with temperature, but the quantity
R
T
ln
X
TiO
2
quartz
is a constant at fixed pressure. The Ti concentration in quartz decreases non-linearly with pressure. To account for the observed
P–T
dependent changes to Ti in quartz, we developed the Ti-in-quartz solubility model:
R
T
ln
X
TiO
2
quartz
=
-
55.287
-
[
P
kbar
∙
(
-
2.625
+
0.0403
P
kbar
)
]
+
R
T
ln
a
TiO
2
rutile
where
R
is the gas constant 0.0083145 kJ/K,
T
is temperature in Kelvin,
P
is the pressure in kbar,
X
TiO
2
quartz
is the mole fraction of TiO
2
in quartz, and
a
TiO
2
rutile
is the activity of TiO
2
in the growth media (e.g., fluid, melt) referenced to rutile at standard state conditions of 1 bar and 25 °C.
Experiments that co-crystallized quartz, rutile, and zircon permitted us to cross-check thermobarometric results from our Ti-in-quartz solubility models against the widely accepted Zr-in-rutile solubility models. We further tested our Ti-in-quartz solubility models using experiments that co-crystallized quartz, wollastonite, and titanite to fix
a
TiO
2
rutile
< 1. Concentrations of Ti in quartz crystallized from the sub-unity
a
TiO
2
rutile
experiments in the α- and β-quartz fields predict activities that match those calculated using the min |
doi_str_mv | 10.1007/s00410-022-01896-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2627873855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693213530</galeid><sourcerecordid>A693213530</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-d874ab19ded085107be35c5f9741ad61f312931aefab0adb2260c383372d36833</originalsourceid><addsrcrecordid>eNp9kU1r4zAQhkVpYdOPP7AnQ89qR5JtWb2FsB-FQFnIXnoRsjVOVWwrlZSy6a9fpSmUhbAINMzoeWdGvIR8ZXDDAORtBCgZUOCcAmtUTZsTMmOlyKmq5SmZAeRnqZT6Qs5jfAbYY9WMPK5cMpP7VQR8ddEltHcF_tmYyaIt8l24cRP8a05WjrqJvmxNSG9F9MO2dYNLu2L0Foei96FITxhG35rgR0xhd0nOejNEvPqIF-T392-rxU-6fPhxv5gvqSlLmahtZGlapvJAaCoGskVRdVWvZMmMrVkvGFeCGexNC8a2nNfQiUYIya2oc7wg14e-edGXLcakn_02THmk5jWXjRRNVX1SazOgdlPvUzDd6GKn57USnIlKQKboEWqNEwYz-Al7l8v_8DdH-Hwsjq47KuAHQRd8jAF7vQluNGGnGei9lfpgpc5W6ncrdZNF4iCKGZ7WGD5_-B_VX1_wn88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627873855</pqid></control><display><type>article</type><title>TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Osborne, Zach R. ; Thomas, Jay B. ; Nachlas, William O. ; Angel, Ross J. ; Hoff, Christopher M. ; Watson, E. Bruce</creator><creatorcontrib>Osborne, Zach R. ; Thomas, Jay B. ; Nachlas, William O. ; Angel, Ross J. ; Hoff, Christopher M. ; Watson, E. Bruce</creatorcontrib><description>New experiments to study titanium solubility in quartz were conducted at conditions not previously explored to extend and improve existing Ti-in-quartz solubility models for thermobarometric applications. Starting materials for experiments included silica glass, anatase, synthetic and natural rutile, Ti-enriched silica gel, Ti-enriched melts, zirconia, and HF and H
2
O fluids. Additional experimental data enabled us to characterize Ti-in-quartz solubility across much of the α- and β-quartz stability fields from 2 to 30 kbar and 550 to 1050 °C. Mutual occurrences of mineral inclusions in one another and Raman spectroscopy of mineral phases confirmed co-crystallization of quartz, rutile, and zircon. Electron microprobe measurements and cathodoluminescence images show that Ti concentrations in quartz crystals from all experiments are relatively uniform, and Ti concentrations of quartz crystals grown at the same experimental conditions using several Ti–rich starting materials and several different growth media are the same within experimental and analytical uncertainties. There are no significant differences in Ti concentrations of quartz across the α–β quartz transition. The Ti concentration in quartz crystals,
X
TiO
2
quartz
, systematically increases with temperature, but the quantity
R
T
ln
X
TiO
2
quartz
is a constant at fixed pressure. The Ti concentration in quartz decreases non-linearly with pressure. To account for the observed
P–T
dependent changes to Ti in quartz, we developed the Ti-in-quartz solubility model:
R
T
ln
X
TiO
2
quartz
=
-
55.287
-
[
P
kbar
∙
(
-
2.625
+
0.0403
P
kbar
)
]
+
R
T
ln
a
TiO
2
rutile
where
R
is the gas constant 0.0083145 kJ/K,
T
is temperature in Kelvin,
P
is the pressure in kbar,
X
TiO
2
quartz
is the mole fraction of TiO
2
in quartz, and
a
TiO
2
rutile
is the activity of TiO
2
in the growth media (e.g., fluid, melt) referenced to rutile at standard state conditions of 1 bar and 25 °C.
Experiments that co-crystallized quartz, rutile, and zircon permitted us to cross-check thermobarometric results from our Ti-in-quartz solubility models against the widely accepted Zr-in-rutile solubility models. We further tested our Ti-in-quartz solubility models using experiments that co-crystallized quartz, wollastonite, and titanite to fix
a
TiO
2
rutile
< 1. Concentrations of Ti in quartz crystallized from the sub-unity
a
TiO
2
rutile
experiments in the α- and β-quartz fields predict activities that match those calculated using the mineral reaction equilibrium and available thermodynamic data. Demonstrated agreement between calculated and measured experimental
P
–
T
conditions using the Zr-in-rutile and Ti-in-quartz solubility models and the consistent reduction of Ti concentrations in systems with
a
TiO
2
rutile
< 1 provide evidence that our experimental results accurately describe the equilibrium solubility of Ti in quartz.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-022-01896-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical methods ; Anatase ; Cathodoluminescence ; Crystal growth ; Crystallization ; Crystals ; Earth and Environmental Science ; Earth Sciences ; Electron probes ; Experiments ; Fields ; Fluids ; Gels ; Geology ; Growth media ; Mineral inclusions ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Pressure ; Quartz ; Quartz crystals ; Raman spectroscopy ; Rutile ; Silica ; Silica gel ; Silica glass ; Silicon dioxide ; Solubility ; Temperature ; Thermodynamic equilibrium ; Titanite ; Titanium ; Titanium dioxide ; Uncertainty analysis ; Wollastonite ; Zircon ; Zirconium dioxide</subject><ispartof>Contributions to mineralogy and petrology, 2022-03, Vol.177 (3), Article 31</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-d874ab19ded085107be35c5f9741ad61f312931aefab0adb2260c383372d36833</citedby><cites>FETCH-LOGICAL-a447t-d874ab19ded085107be35c5f9741ad61f312931aefab0adb2260c383372d36833</cites><orcidid>0000-0001-5227-5100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-022-01896-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-022-01896-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Osborne, Zach R.</creatorcontrib><creatorcontrib>Thomas, Jay B.</creatorcontrib><creatorcontrib>Nachlas, William O.</creatorcontrib><creatorcontrib>Angel, Ross J.</creatorcontrib><creatorcontrib>Hoff, Christopher M.</creatorcontrib><creatorcontrib>Watson, E. Bruce</creatorcontrib><title>TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>New experiments to study titanium solubility in quartz were conducted at conditions not previously explored to extend and improve existing Ti-in-quartz solubility models for thermobarometric applications. Starting materials for experiments included silica glass, anatase, synthetic and natural rutile, Ti-enriched silica gel, Ti-enriched melts, zirconia, and HF and H
2
O fluids. Additional experimental data enabled us to characterize Ti-in-quartz solubility across much of the α- and β-quartz stability fields from 2 to 30 kbar and 550 to 1050 °C. Mutual occurrences of mineral inclusions in one another and Raman spectroscopy of mineral phases confirmed co-crystallization of quartz, rutile, and zircon. Electron microprobe measurements and cathodoluminescence images show that Ti concentrations in quartz crystals from all experiments are relatively uniform, and Ti concentrations of quartz crystals grown at the same experimental conditions using several Ti–rich starting materials and several different growth media are the same within experimental and analytical uncertainties. There are no significant differences in Ti concentrations of quartz across the α–β quartz transition. The Ti concentration in quartz crystals,
X
TiO
2
quartz
, systematically increases with temperature, but the quantity
R
T
ln
X
TiO
2
quartz
is a constant at fixed pressure. The Ti concentration in quartz decreases non-linearly with pressure. To account for the observed
P–T
dependent changes to Ti in quartz, we developed the Ti-in-quartz solubility model:
R
T
ln
X
TiO
2
quartz
=
-
55.287
-
[
P
kbar
∙
(
-
2.625
+
0.0403
P
kbar
)
]
+
R
T
ln
a
TiO
2
rutile
where
R
is the gas constant 0.0083145 kJ/K,
T
is temperature in Kelvin,
P
is the pressure in kbar,
X
TiO
2
quartz
is the mole fraction of TiO
2
in quartz, and
a
TiO
2
rutile
is the activity of TiO
2
in the growth media (e.g., fluid, melt) referenced to rutile at standard state conditions of 1 bar and 25 °C.
Experiments that co-crystallized quartz, rutile, and zircon permitted us to cross-check thermobarometric results from our Ti-in-quartz solubility models against the widely accepted Zr-in-rutile solubility models. We further tested our Ti-in-quartz solubility models using experiments that co-crystallized quartz, wollastonite, and titanite to fix
a
TiO
2
rutile
< 1. Concentrations of Ti in quartz crystallized from the sub-unity
a
TiO
2
rutile
experiments in the α- and β-quartz fields predict activities that match those calculated using the mineral reaction equilibrium and available thermodynamic data. Demonstrated agreement between calculated and measured experimental
P
–
T
conditions using the Zr-in-rutile and Ti-in-quartz solubility models and the consistent reduction of Ti concentrations in systems with
a
TiO
2
rutile
< 1 provide evidence that our experimental results accurately describe the equilibrium solubility of Ti in quartz.</description><subject>Analytical methods</subject><subject>Anatase</subject><subject>Cathodoluminescence</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electron probes</subject><subject>Experiments</subject><subject>Fields</subject><subject>Fluids</subject><subject>Gels</subject><subject>Geology</subject><subject>Growth media</subject><subject>Mineral inclusions</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Pressure</subject><subject>Quartz</subject><subject>Quartz crystals</subject><subject>Raman spectroscopy</subject><subject>Rutile</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Solubility</subject><subject>Temperature</subject><subject>Thermodynamic equilibrium</subject><subject>Titanite</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Uncertainty analysis</subject><subject>Wollastonite</subject><subject>Zircon</subject><subject>Zirconium dioxide</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1r4zAQhkVpYdOPP7AnQ89qR5JtWb2FsB-FQFnIXnoRsjVOVWwrlZSy6a9fpSmUhbAINMzoeWdGvIR8ZXDDAORtBCgZUOCcAmtUTZsTMmOlyKmq5SmZAeRnqZT6Qs5jfAbYY9WMPK5cMpP7VQR8ddEltHcF_tmYyaIt8l24cRP8a05WjrqJvmxNSG9F9MO2dYNLu2L0Foei96FITxhG35rgR0xhd0nOejNEvPqIF-T392-rxU-6fPhxv5gvqSlLmahtZGlapvJAaCoGskVRdVWvZMmMrVkvGFeCGexNC8a2nNfQiUYIya2oc7wg14e-edGXLcakn_02THmk5jWXjRRNVX1SazOgdlPvUzDd6GKn57USnIlKQKboEWqNEwYz-Al7l8v_8DdH-Hwsjq47KuAHQRd8jAF7vQluNGGnGei9lfpgpc5W6ncrdZNF4iCKGZ7WGD5_-B_VX1_wn88</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Osborne, Zach R.</creator><creator>Thomas, Jay B.</creator><creator>Nachlas, William O.</creator><creator>Angel, Ross J.</creator><creator>Hoff, Christopher M.</creator><creator>Watson, E. Bruce</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0001-5227-5100</orcidid></search><sort><creationdate>20220301</creationdate><title>TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry</title><author>Osborne, Zach R. ; Thomas, Jay B. ; Nachlas, William O. ; Angel, Ross J. ; Hoff, Christopher M. ; Watson, E. Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-d874ab19ded085107be35c5f9741ad61f312931aefab0adb2260c383372d36833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical methods</topic><topic>Anatase</topic><topic>Cathodoluminescence</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electron probes</topic><topic>Experiments</topic><topic>Fields</topic><topic>Fluids</topic><topic>Gels</topic><topic>Geology</topic><topic>Growth media</topic><topic>Mineral inclusions</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Pressure</topic><topic>Quartz</topic><topic>Quartz crystals</topic><topic>Raman spectroscopy</topic><topic>Rutile</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Solubility</topic><topic>Temperature</topic><topic>Thermodynamic equilibrium</topic><topic>Titanite</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Uncertainty analysis</topic><topic>Wollastonite</topic><topic>Zircon</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osborne, Zach R.</creatorcontrib><creatorcontrib>Thomas, Jay B.</creatorcontrib><creatorcontrib>Nachlas, William O.</creatorcontrib><creatorcontrib>Angel, Ross J.</creatorcontrib><creatorcontrib>Hoff, Christopher M.</creatorcontrib><creatorcontrib>Watson, E. Bruce</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osborne, Zach R.</au><au>Thomas, Jay B.</au><au>Nachlas, William O.</au><au>Angel, Ross J.</au><au>Hoff, Christopher M.</au><au>Watson, E. Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>177</volume><issue>3</issue><artnum>31</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>New experiments to study titanium solubility in quartz were conducted at conditions not previously explored to extend and improve existing Ti-in-quartz solubility models for thermobarometric applications. Starting materials for experiments included silica glass, anatase, synthetic and natural rutile, Ti-enriched silica gel, Ti-enriched melts, zirconia, and HF and H
2
O fluids. Additional experimental data enabled us to characterize Ti-in-quartz solubility across much of the α- and β-quartz stability fields from 2 to 30 kbar and 550 to 1050 °C. Mutual occurrences of mineral inclusions in one another and Raman spectroscopy of mineral phases confirmed co-crystallization of quartz, rutile, and zircon. Electron microprobe measurements and cathodoluminescence images show that Ti concentrations in quartz crystals from all experiments are relatively uniform, and Ti concentrations of quartz crystals grown at the same experimental conditions using several Ti–rich starting materials and several different growth media are the same within experimental and analytical uncertainties. There are no significant differences in Ti concentrations of quartz across the α–β quartz transition. The Ti concentration in quartz crystals,
X
TiO
2
quartz
, systematically increases with temperature, but the quantity
R
T
ln
X
TiO
2
quartz
is a constant at fixed pressure. The Ti concentration in quartz decreases non-linearly with pressure. To account for the observed
P–T
dependent changes to Ti in quartz, we developed the Ti-in-quartz solubility model:
R
T
ln
X
TiO
2
quartz
=
-
55.287
-
[
P
kbar
∙
(
-
2.625
+
0.0403
P
kbar
)
]
+
R
T
ln
a
TiO
2
rutile
where
R
is the gas constant 0.0083145 kJ/K,
T
is temperature in Kelvin,
P
is the pressure in kbar,
X
TiO
2
quartz
is the mole fraction of TiO
2
in quartz, and
a
TiO
2
rutile
is the activity of TiO
2
in the growth media (e.g., fluid, melt) referenced to rutile at standard state conditions of 1 bar and 25 °C.
Experiments that co-crystallized quartz, rutile, and zircon permitted us to cross-check thermobarometric results from our Ti-in-quartz solubility models against the widely accepted Zr-in-rutile solubility models. We further tested our Ti-in-quartz solubility models using experiments that co-crystallized quartz, wollastonite, and titanite to fix
a
TiO
2
rutile
< 1. Concentrations of Ti in quartz crystallized from the sub-unity
a
TiO
2
rutile
experiments in the α- and β-quartz fields predict activities that match those calculated using the mineral reaction equilibrium and available thermodynamic data. Demonstrated agreement between calculated and measured experimental
P
–
T
conditions using the Zr-in-rutile and Ti-in-quartz solubility models and the consistent reduction of Ti concentrations in systems with
a
TiO
2
rutile
< 1 provide evidence that our experimental results accurately describe the equilibrium solubility of Ti in quartz.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-022-01896-8</doi><orcidid>https://orcid.org/0000-0001-5227-5100</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2022-03, Vol.177 (3), Article 31 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_journals_2627873855 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical methods Anatase Cathodoluminescence Crystal growth Crystallization Crystals Earth and Environmental Science Earth Sciences Electron probes Experiments Fields Fluids Gels Geology Growth media Mineral inclusions Mineral Resources Mineralogy Original Paper Petrology Pressure Quartz Quartz crystals Raman spectroscopy Rutile Silica Silica gel Silica glass Silicon dioxide Solubility Temperature Thermodynamic equilibrium Titanite Titanium Titanium dioxide Uncertainty analysis Wollastonite Zircon Zirconium dioxide |
title | TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TitaniQ%20revisited:%20expanded%20and%20improved%20Ti-in-quartz%20solubility%20model%20for%20thermobarometry&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Osborne,%20Zach%20R.&rft.date=2022-03-01&rft.volume=177&rft.issue=3&rft.artnum=31&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-022-01896-8&rft_dat=%3Cgale_proqu%3EA693213530%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627873855&rft_id=info:pmid/&rft_galeid=A693213530&rfr_iscdi=true |