Numerical Investigation of Roof Stability in Longwall Face Developed in Shallow Depth under Weak Geological Conditions

Developing longwall mining under weak geological conditions imposes a substantial challenge with regard to the higher risk of falling roofs. Maintaining the stability of the longwall face in this aforementioned condition is crucial for smooth operation. Investigating roof conditions in longwall requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-02, Vol.14 (3), p.1036
Hauptverfasser: Mao, Pisith, Hashikawa, Hiroto, Sasaoka, Takashi, Shimada, Hideki, Wan, Zhijun, Hamanaka, Akihiro, Oya, Jiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing longwall mining under weak geological conditions imposes a substantial challenge with regard to the higher risk of falling roofs. Maintaining the stability of the longwall face in this aforementioned condition is crucial for smooth operation. Investigating roof conditions in longwall requires detailed study of rock behavior in response to a few key influences. This paper presents the outcome of a numerical analysis of roof stability in shallow depth longwall face under weak geological conditions. A series of validated FLAC3D models was developed to examine the roof condition of the longwall face under the influence of shield canopy ratio, shield resistance force, and stress ratio. The results show that these three key factors have a significant impact on longwall roof conditions, which can be used to optimize its stability. Two distinct mechanisms of the roof caving behavior can be observed under the influence of stress ratio. The countermeasures of reducing face-to-tip distance and cutting width are proposed to improve the roof condition of longwall face under weak rock. The outcomes show a substantial improvement in roof conditions after adopting the proposed method.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14031036