Advances in Characterizing Gas Hydrate Formation in Sediments with NMR Transverse Relaxation Time
The formation process, structure, and distribution of gas hydrate in sediments have become focal points in exploring and exploiting natural gas hydrate. To better understand the dynamic behavior of gas hydrate formation in sediments, transverse relaxation time (T2) of nuclear magnetic resonance (NMR...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-02, Vol.14 (3), p.330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 330 |
container_title | Water (Basel) |
container_volume | 14 |
creator | Liu, Biao Zhan, Linsen Lu, Hailong Zhang, Jiecheng |
description | The formation process, structure, and distribution of gas hydrate in sediments have become focal points in exploring and exploiting natural gas hydrate. To better understand the dynamic behavior of gas hydrate formation in sediments, transverse relaxation time (T2) of nuclear magnetic resonance (NMR) is widely used to quantitatively characterize the formation process of gas hydrate and the change in pore characteristics of sediments. NMR T2 has been considered as a rapid and non-destructive method to distinguish the phase states of water, gas, and gas hydrate, estimate the saturations of water and gas hydrate, and analyze the kinetics of gas hydrate formation in sediments. NMR T2 is also widely employed to specify the pore structure in sediments in terms of pore size distribution, porosity, and permeability. For the recognition of the advantages and shortage of NMR T2 method, comparisons with other methods as X-ray CT, cryo-SEM, etc., are made regarding the application characteristics including resolution, phase recognition, and scanning time. As a future perspective, combining NMR T2 with other techniques can more effectively characterize the dynamic behavior of gas hydrate formation and pore structure in sediments. |
doi_str_mv | 10.3390/w14030330 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2627847364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791337994</galeid><sourcerecordid>A791337994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-72f796fca93f30fd5f8fa5a83debf580fdc103020f9ceaf1c2d47076cecdb853</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhhujiQQ5-AZNPHkA2213uz0SImCCmuDeN6U7hRK2i-0C4tNbssY4c5jJ5PtnMj9C95SMGJPk6UQ5YYQxcoV6CRFsyDmn1__6WzQIYUticJnnKekhNa6OymkI2Do82SivdAveflu3xjMV8PxcedUCnja-Vq1t3IX7gMrW4NqAT7bd4LfXJS68cuEIPgBewk59dWwRsTt0Y9QuwOC39lExfS4m8-HiffYyGS-GmjHaDkVihMyMVpIZRkyVmtyoVOWsgpVJ8zjRND6XECM1KEN1UnFBRKZBV6s8ZX300K3d--bzAKEtt83Bu3ixTLJE5FywjEdq1FFrtYPSOtO08eOYFdRWNw6MjfOxkJQxIeVF8NgJtG9C8GDKvbe18ueSkvJievlnOvsBFZt0Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627847364</pqid></control><display><type>article</type><title>Advances in Characterizing Gas Hydrate Formation in Sediments with NMR Transverse Relaxation Time</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Biao ; Zhan, Linsen ; Lu, Hailong ; Zhang, Jiecheng</creator><creatorcontrib>Liu, Biao ; Zhan, Linsen ; Lu, Hailong ; Zhang, Jiecheng</creatorcontrib><description>The formation process, structure, and distribution of gas hydrate in sediments have become focal points in exploring and exploiting natural gas hydrate. To better understand the dynamic behavior of gas hydrate formation in sediments, transverse relaxation time (T2) of nuclear magnetic resonance (NMR) is widely used to quantitatively characterize the formation process of gas hydrate and the change in pore characteristics of sediments. NMR T2 has been considered as a rapid and non-destructive method to distinguish the phase states of water, gas, and gas hydrate, estimate the saturations of water and gas hydrate, and analyze the kinetics of gas hydrate formation in sediments. NMR T2 is also widely employed to specify the pore structure in sediments in terms of pore size distribution, porosity, and permeability. For the recognition of the advantages and shortage of NMR T2 method, comparisons with other methods as X-ray CT, cryo-SEM, etc., are made regarding the application characteristics including resolution, phase recognition, and scanning time. As a future perspective, combining NMR T2 with other techniques can more effectively characterize the dynamic behavior of gas hydrate formation and pore structure in sediments.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14030330</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Clathrate compounds ; Computed tomography ; Energy ; Gas hydrates ; Hydrogen ; Hydrogen bonding ; Laplace transforms ; Magnetic fields ; Membrane permeability ; Methane ; Natural gas ; NMR ; Nondestructive testing ; Nuclear magnetic resonance ; Permeability ; Pore size ; Pore size distribution ; Porosity ; Recognition ; Relaxation time ; Sediments ; Sediments (Geology) ; Size distribution</subject><ispartof>Water (Basel), 2022-02, Vol.14 (3), p.330</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-72f796fca93f30fd5f8fa5a83debf580fdc103020f9ceaf1c2d47076cecdb853</citedby><cites>FETCH-LOGICAL-c331t-72f796fca93f30fd5f8fa5a83debf580fdc103020f9ceaf1c2d47076cecdb853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Biao</creatorcontrib><creatorcontrib>Zhan, Linsen</creatorcontrib><creatorcontrib>Lu, Hailong</creatorcontrib><creatorcontrib>Zhang, Jiecheng</creatorcontrib><title>Advances in Characterizing Gas Hydrate Formation in Sediments with NMR Transverse Relaxation Time</title><title>Water (Basel)</title><description>The formation process, structure, and distribution of gas hydrate in sediments have become focal points in exploring and exploiting natural gas hydrate. To better understand the dynamic behavior of gas hydrate formation in sediments, transverse relaxation time (T2) of nuclear magnetic resonance (NMR) is widely used to quantitatively characterize the formation process of gas hydrate and the change in pore characteristics of sediments. NMR T2 has been considered as a rapid and non-destructive method to distinguish the phase states of water, gas, and gas hydrate, estimate the saturations of water and gas hydrate, and analyze the kinetics of gas hydrate formation in sediments. NMR T2 is also widely employed to specify the pore structure in sediments in terms of pore size distribution, porosity, and permeability. For the recognition of the advantages and shortage of NMR T2 method, comparisons with other methods as X-ray CT, cryo-SEM, etc., are made regarding the application characteristics including resolution, phase recognition, and scanning time. As a future perspective, combining NMR T2 with other techniques can more effectively characterize the dynamic behavior of gas hydrate formation and pore structure in sediments.</description><subject>Carbon</subject><subject>Clathrate compounds</subject><subject>Computed tomography</subject><subject>Energy</subject><subject>Gas hydrates</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Laplace transforms</subject><subject>Magnetic fields</subject><subject>Membrane permeability</subject><subject>Methane</subject><subject>Natural gas</subject><subject>NMR</subject><subject>Nondestructive testing</subject><subject>Nuclear magnetic resonance</subject><subject>Permeability</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Recognition</subject><subject>Relaxation time</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Size distribution</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkMFOAjEQhhujiQQ5-AZNPHkA2213uz0SImCCmuDeN6U7hRK2i-0C4tNbssY4c5jJ5PtnMj9C95SMGJPk6UQ5YYQxcoV6CRFsyDmn1__6WzQIYUticJnnKekhNa6OymkI2Do82SivdAveflu3xjMV8PxcedUCnja-Vq1t3IX7gMrW4NqAT7bd4LfXJS68cuEIPgBewk59dWwRsTt0Y9QuwOC39lExfS4m8-HiffYyGS-GmjHaDkVihMyMVpIZRkyVmtyoVOWsgpVJ8zjRND6XECM1KEN1UnFBRKZBV6s8ZX300K3d--bzAKEtt83Bu3ixTLJE5FywjEdq1FFrtYPSOtO08eOYFdRWNw6MjfOxkJQxIeVF8NgJtG9C8GDKvbe18ueSkvJievlnOvsBFZt0Kg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Liu, Biao</creator><creator>Zhan, Linsen</creator><creator>Lu, Hailong</creator><creator>Zhang, Jiecheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220201</creationdate><title>Advances in Characterizing Gas Hydrate Formation in Sediments with NMR Transverse Relaxation Time</title><author>Liu, Biao ; Zhan, Linsen ; Lu, Hailong ; Zhang, Jiecheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-72f796fca93f30fd5f8fa5a83debf580fdc103020f9ceaf1c2d47076cecdb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Clathrate compounds</topic><topic>Computed tomography</topic><topic>Energy</topic><topic>Gas hydrates</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Laplace transforms</topic><topic>Magnetic fields</topic><topic>Membrane permeability</topic><topic>Methane</topic><topic>Natural gas</topic><topic>NMR</topic><topic>Nondestructive testing</topic><topic>Nuclear magnetic resonance</topic><topic>Permeability</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Recognition</topic><topic>Relaxation time</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Biao</creatorcontrib><creatorcontrib>Zhan, Linsen</creatorcontrib><creatorcontrib>Lu, Hailong</creatorcontrib><creatorcontrib>Zhang, Jiecheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Biao</au><au>Zhan, Linsen</au><au>Lu, Hailong</au><au>Zhang, Jiecheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Characterizing Gas Hydrate Formation in Sediments with NMR Transverse Relaxation Time</atitle><jtitle>Water (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>330</spage><pages>330-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The formation process, structure, and distribution of gas hydrate in sediments have become focal points in exploring and exploiting natural gas hydrate. To better understand the dynamic behavior of gas hydrate formation in sediments, transverse relaxation time (T2) of nuclear magnetic resonance (NMR) is widely used to quantitatively characterize the formation process of gas hydrate and the change in pore characteristics of sediments. NMR T2 has been considered as a rapid and non-destructive method to distinguish the phase states of water, gas, and gas hydrate, estimate the saturations of water and gas hydrate, and analyze the kinetics of gas hydrate formation in sediments. NMR T2 is also widely employed to specify the pore structure in sediments in terms of pore size distribution, porosity, and permeability. For the recognition of the advantages and shortage of NMR T2 method, comparisons with other methods as X-ray CT, cryo-SEM, etc., are made regarding the application characteristics including resolution, phase recognition, and scanning time. As a future perspective, combining NMR T2 with other techniques can more effectively characterize the dynamic behavior of gas hydrate formation and pore structure in sediments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14030330</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2022-02, Vol.14 (3), p.330 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2627847364 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Carbon Clathrate compounds Computed tomography Energy Gas hydrates Hydrogen Hydrogen bonding Laplace transforms Magnetic fields Membrane permeability Methane Natural gas NMR Nondestructive testing Nuclear magnetic resonance Permeability Pore size Pore size distribution Porosity Recognition Relaxation time Sediments Sediments (Geology) Size distribution |
title | Advances in Characterizing Gas Hydrate Formation in Sediments with NMR Transverse Relaxation Time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Characterizing%20Gas%20Hydrate%20Formation%20in%20Sediments%20with%20NMR%20Transverse%20Relaxation%20Time&rft.jtitle=Water%20(Basel)&rft.au=Liu,%20Biao&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=330&rft.pages=330-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14030330&rft_dat=%3Cgale_proqu%3EA791337994%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627847364&rft_id=info:pmid/&rft_galeid=A791337994&rfr_iscdi=true |