Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models

Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empiri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-02, Vol.14 (3), p.1123
Hauptverfasser: Supriyasilp, Thanaporn, Suwanlertcharoen, Teerawat, Pongput, Nudnicha, Pongput, Kobkiat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1123
container_title Sustainability
container_volume 14
creator Supriyasilp, Thanaporn
Suwanlertcharoen, Teerawat
Pongput, Nudnicha
Pongput, Kobkiat
description Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.
doi_str_mv 10.3390/su14031123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627840564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627840564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGov_gUBb0I1H_vRHGuxKlSE1iJ4WZLsRLfsbmome_C_N1pB5zJv4DfvwSPknLMrKRW7xoFnTHIu5BEZCVbyKWc5O_6nT8kEccfSSMkVL0bErL2P9NX3QDe-aemjbzAOAegcERA76CPVkcZ3oEsdOrqxugW6xaZ_o2vofEx_0P-cuq_pi44Q6I1udW8hmdXQ4hk5cbpFmPzuMdkub58X99PV093DYr6aWqHyOJ0xlXMnWebKwjCbZ0xYMFYloWtwvNRKKiXAlM4YYZySGoq8yPKalWDqWo7JxcF3H_zHABirnR9CnyIrUYhylrFEJ-ryQNngEQO4ah-aTofPirPqu8bqr0b5BbAEZDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627840564</pqid></control><display><type>article</type><title>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Supriyasilp, Thanaporn ; Suwanlertcharoen, Teerawat ; Pongput, Nudnicha ; Pongput, Kobkiat</creator><creatorcontrib>Supriyasilp, Thanaporn ; Suwanlertcharoen, Teerawat ; Pongput, Nudnicha ; Pongput, Kobkiat</creatorcontrib><description>Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14031123</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Backscattering ; Corn ; Methods ; Remote sensing ; Remote sensors ; Root zone ; Sensors ; Soil investigations ; Soil management ; Soil moisture ; Soil water ; Sustainability ; Verification ; Water balance ; Water depth ; Water resources ; Water resources management</subject><ispartof>Sustainability, 2022-02, Vol.14 (3), p.1123</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</citedby><cites>FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</cites><orcidid>0000-0002-2196-9684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Supriyasilp, Thanaporn</creatorcontrib><creatorcontrib>Suwanlertcharoen, Teerawat</creatorcontrib><creatorcontrib>Pongput, Nudnicha</creatorcontrib><creatorcontrib>Pongput, Kobkiat</creatorcontrib><title>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</title><title>Sustainability</title><description>Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.</description><subject>Agriculture</subject><subject>Backscattering</subject><subject>Corn</subject><subject>Methods</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Root zone</subject><subject>Sensors</subject><subject>Soil investigations</subject><subject>Soil management</subject><subject>Soil moisture</subject><subject>Soil water</subject><subject>Sustainability</subject><subject>Verification</subject><subject>Water balance</subject><subject>Water depth</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1LAzEQxYMoWGov_gUBb0I1H_vRHGuxKlSE1iJ4WZLsRLfsbmome_C_N1pB5zJv4DfvwSPknLMrKRW7xoFnTHIu5BEZCVbyKWc5O_6nT8kEccfSSMkVL0bErL2P9NX3QDe-aemjbzAOAegcERA76CPVkcZ3oEsdOrqxugW6xaZ_o2vofEx_0P-cuq_pi44Q6I1udW8hmdXQ4hk5cbpFmPzuMdkub58X99PV093DYr6aWqHyOJ0xlXMnWebKwjCbZ0xYMFYloWtwvNRKKiXAlM4YYZySGoq8yPKalWDqWo7JxcF3H_zHABirnR9CnyIrUYhylrFEJ-ryQNngEQO4ah-aTofPirPqu8bqr0b5BbAEZDg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Supriyasilp, Thanaporn</creator><creator>Suwanlertcharoen, Teerawat</creator><creator>Pongput, Nudnicha</creator><creator>Pongput, Kobkiat</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2196-9684</orcidid></search><sort><creationdate>20220201</creationdate><title>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</title><author>Supriyasilp, Thanaporn ; Suwanlertcharoen, Teerawat ; Pongput, Nudnicha ; Pongput, Kobkiat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Backscattering</topic><topic>Corn</topic><topic>Methods</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Root zone</topic><topic>Sensors</topic><topic>Soil investigations</topic><topic>Soil management</topic><topic>Soil moisture</topic><topic>Soil water</topic><topic>Sustainability</topic><topic>Verification</topic><topic>Water balance</topic><topic>Water depth</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Supriyasilp, Thanaporn</creatorcontrib><creatorcontrib>Suwanlertcharoen, Teerawat</creatorcontrib><creatorcontrib>Pongput, Nudnicha</creatorcontrib><creatorcontrib>Pongput, Kobkiat</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Supriyasilp, Thanaporn</au><au>Suwanlertcharoen, Teerawat</au><au>Pongput, Nudnicha</au><au>Pongput, Kobkiat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</atitle><jtitle>Sustainability</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1123</spage><pages>1123-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14031123</doi><orcidid>https://orcid.org/0000-0002-2196-9684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-02, Vol.14 (3), p.1123
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2627840564
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agriculture
Backscattering
Corn
Methods
Remote sensing
Remote sensors
Root zone
Sensors
Soil investigations
Soil management
Soil moisture
Soil water
Sustainability
Verification
Water balance
Water depth
Water resources
Water resources management
title Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20Zone%20Soil%20Moisture%20Assessment%20at%20the%20Farm%20Scale%20Using%20Remote%20Sensing%20and%20Water%20Balance%20Models&rft.jtitle=Sustainability&rft.au=Supriyasilp,%20Thanaporn&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=1123&rft.pages=1123-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14031123&rft_dat=%3Cproquest_cross%3E2627840564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627840564&rft_id=info:pmid/&rfr_iscdi=true