Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models
Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empiri...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-02, Vol.14 (3), p.1123 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1123 |
container_title | Sustainability |
container_volume | 14 |
creator | Supriyasilp, Thanaporn Suwanlertcharoen, Teerawat Pongput, Nudnicha Pongput, Kobkiat |
description | Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data. |
doi_str_mv | 10.3390/su14031123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627840564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627840564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGov_gUBb0I1H_vRHGuxKlSE1iJ4WZLsRLfsbmome_C_N1pB5zJv4DfvwSPknLMrKRW7xoFnTHIu5BEZCVbyKWc5O_6nT8kEccfSSMkVL0bErL2P9NX3QDe-aemjbzAOAegcERA76CPVkcZ3oEsdOrqxugW6xaZ_o2vofEx_0P-cuq_pi44Q6I1udW8hmdXQ4hk5cbpFmPzuMdkub58X99PV093DYr6aWqHyOJ0xlXMnWebKwjCbZ0xYMFYloWtwvNRKKiXAlM4YYZySGoq8yPKalWDqWo7JxcF3H_zHABirnR9CnyIrUYhylrFEJ-ryQNngEQO4ah-aTofPirPqu8bqr0b5BbAEZDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627840564</pqid></control><display><type>article</type><title>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Supriyasilp, Thanaporn ; Suwanlertcharoen, Teerawat ; Pongput, Nudnicha ; Pongput, Kobkiat</creator><creatorcontrib>Supriyasilp, Thanaporn ; Suwanlertcharoen, Teerawat ; Pongput, Nudnicha ; Pongput, Kobkiat</creatorcontrib><description>Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14031123</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Backscattering ; Corn ; Methods ; Remote sensing ; Remote sensors ; Root zone ; Sensors ; Soil investigations ; Soil management ; Soil moisture ; Soil water ; Sustainability ; Verification ; Water balance ; Water depth ; Water resources ; Water resources management</subject><ispartof>Sustainability, 2022-02, Vol.14 (3), p.1123</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</citedby><cites>FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</cites><orcidid>0000-0002-2196-9684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Supriyasilp, Thanaporn</creatorcontrib><creatorcontrib>Suwanlertcharoen, Teerawat</creatorcontrib><creatorcontrib>Pongput, Nudnicha</creatorcontrib><creatorcontrib>Pongput, Kobkiat</creatorcontrib><title>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</title><title>Sustainability</title><description>Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.</description><subject>Agriculture</subject><subject>Backscattering</subject><subject>Corn</subject><subject>Methods</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Root zone</subject><subject>Sensors</subject><subject>Soil investigations</subject><subject>Soil management</subject><subject>Soil moisture</subject><subject>Soil water</subject><subject>Sustainability</subject><subject>Verification</subject><subject>Water balance</subject><subject>Water depth</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1LAzEQxYMoWGov_gUBb0I1H_vRHGuxKlSE1iJ4WZLsRLfsbmome_C_N1pB5zJv4DfvwSPknLMrKRW7xoFnTHIu5BEZCVbyKWc5O_6nT8kEccfSSMkVL0bErL2P9NX3QDe-aemjbzAOAegcERA76CPVkcZ3oEsdOrqxugW6xaZ_o2vofEx_0P-cuq_pi44Q6I1udW8hmdXQ4hk5cbpFmPzuMdkub58X99PV093DYr6aWqHyOJ0xlXMnWebKwjCbZ0xYMFYloWtwvNRKKiXAlM4YYZySGoq8yPKalWDqWo7JxcF3H_zHABirnR9CnyIrUYhylrFEJ-ryQNngEQO4ah-aTofPirPqu8bqr0b5BbAEZDg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Supriyasilp, Thanaporn</creator><creator>Suwanlertcharoen, Teerawat</creator><creator>Pongput, Nudnicha</creator><creator>Pongput, Kobkiat</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2196-9684</orcidid></search><sort><creationdate>20220201</creationdate><title>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</title><author>Supriyasilp, Thanaporn ; Suwanlertcharoen, Teerawat ; Pongput, Nudnicha ; Pongput, Kobkiat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-80951f304f76b0c5402cebc9540adef17a93992eb7fbb2bf93ae65645d07ebdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Backscattering</topic><topic>Corn</topic><topic>Methods</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Root zone</topic><topic>Sensors</topic><topic>Soil investigations</topic><topic>Soil management</topic><topic>Soil moisture</topic><topic>Soil water</topic><topic>Sustainability</topic><topic>Verification</topic><topic>Water balance</topic><topic>Water depth</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Supriyasilp, Thanaporn</creatorcontrib><creatorcontrib>Suwanlertcharoen, Teerawat</creatorcontrib><creatorcontrib>Pongput, Nudnicha</creatorcontrib><creatorcontrib>Pongput, Kobkiat</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Supriyasilp, Thanaporn</au><au>Suwanlertcharoen, Teerawat</au><au>Pongput, Nudnicha</au><au>Pongput, Kobkiat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models</atitle><jtitle>Sustainability</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1123</spage><pages>1123-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Water resource planning and management necessitates understanding soil moisture changes with depth in the root zone at the farm scale. For measuring soil moisture, remote sensing methods have been relatively successful. Soil moisture is estimated from image data, using in situ moisture and an empirical scattering model via regression fit analysis. However, in situ sensor data are prone to misinterpretations, requiring verification. Herein, we aimed at investigating the application of soil moisture from the water balance model towards verification of in situ soil moisture sensor data before in situ data was assessed for its relationship with remote sensing data. In situ soil moisture sensor data was obtained at 10 and 30 cm, and CROPWAT8.0 furnished root zone soil moisture data. The correlation between the in situ soil moisture at 10 and 30 cm was 0.78; the correlation between the soil moisture from CROPWAT8.0 and the in situ soil moisture were 0.64 and 0.62 at 10 and 30 cm, respectively. The R2 between Sentinel-1 backscatter coefficients and in situ moisture were 0.74 and 0.68 at each depth, respectively. Therefore, the water balance model could verify sensor results before assessing in situ soil moisture data for relationship with remote sensing data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14031123</doi><orcidid>https://orcid.org/0000-0002-2196-9684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-02, Vol.14 (3), p.1123 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2627840564 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agriculture Backscattering Corn Methods Remote sensing Remote sensors Root zone Sensors Soil investigations Soil management Soil moisture Soil water Sustainability Verification Water balance Water depth Water resources Water resources management |
title | Root Zone Soil Moisture Assessment at the Farm Scale Using Remote Sensing and Water Balance Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20Zone%20Soil%20Moisture%20Assessment%20at%20the%20Farm%20Scale%20Using%20Remote%20Sensing%20and%20Water%20Balance%20Models&rft.jtitle=Sustainability&rft.au=Supriyasilp,%20Thanaporn&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=1123&rft.pages=1123-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14031123&rft_dat=%3Cproquest_cross%3E2627840564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627840564&rft_id=info:pmid/&rfr_iscdi=true |