Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry

When a consultant of a company that provides a smart factory solution consults with a customer, it is difficult to define the outline of the manufacturing process and create all activities within the process by case. It requires a large amount of resources from the company to perform a task. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-02, Vol.14 (3), p.1103
Hauptverfasser: Moon, Junhyung, Park, Gyuyoung, Yang, Minyeol, Jeong, Jongpil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1103
container_title Sustainability
container_volume 14
creator Moon, Junhyung
Park, Gyuyoung
Yang, Minyeol
Jeong, Jongpil
description When a consultant of a company that provides a smart factory solution consults with a customer, it is difficult to define the outline of the manufacturing process and create all activities within the process by case. It requires a large amount of resources from the company to perform a task. In this study, we propose a process discovery automation system that helps consultants define manufacturing processes. In addition, for process discovery, a fully attention-based transformer model, which has recently shown a strong performance, was applied. To be useful to consultants, we solved the black box characteristics of the deep learning model applied to process discovery and proposed a visualization method that can be used in the monitoring system when explaining the discovery process. In this study, we used the event log of the metal fabrication process to perform the modeling, visualization, and evaluation.
doi_str_mv 10.3390/su14031103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627840376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627840376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c4063e3c1b4b289bab7b9f6008ea55788cf226b21a2c8ae1ed76c05811679fa53</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGov_oKAN2E1H91s9lhbPwpVe1Cvy2w2qSk1qclGqL_e1RUUcS4zMM87Hy9Cx5SccV6S85jomHBKCd9DA0YKmlGSk_1f9SEaxbgmXXBOSyoGyM90tCuHwTX4SQdrrILWeoe9wcvglY4Rz2xU_k2HHb6AqBvcde8WSzzZboMH9dxrbUywse-92PiAb8ElA6pNwboVnrsmxTbsjtCBgU3Uo-88RI9Xlw_Tm2xxfz2fThaZYmXeZmpMBNdc0XpcM1nWUBd1aQQhUkOeF1Iqw5ioGQWmJGiqm0IokktKRVEayPkQnfRzuxtfk45ttfYpuG5lxQQrZGdUITrqtKdU8DEGbaptsC8QdhUl1aen1Y-nHUz-wMq2X_-2AezmP8kHGmt5fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627840376</pqid></control><display><type>article</type><title>Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Moon, Junhyung ; Park, Gyuyoung ; Yang, Minyeol ; Jeong, Jongpil</creator><creatorcontrib>Moon, Junhyung ; Park, Gyuyoung ; Yang, Minyeol ; Jeong, Jongpil</creatorcontrib><description>When a consultant of a company that provides a smart factory solution consults with a customer, it is difficult to define the outline of the manufacturing process and create all activities within the process by case. It requires a large amount of resources from the company to perform a task. In this study, we propose a process discovery automation system that helps consultants define manufacturing processes. In addition, for process discovery, a fully attention-based transformer model, which has recently shown a strong performance, was applied. To be useful to consultants, we solved the black box characteristics of the deep learning model applied to process discovery and proposed a visualization method that can be used in the monitoring system when explaining the discovery process. In this study, we used the event log of the metal fabrication process to perform the modeling, visualization, and evaluation.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14031103</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Automation ; Consultants ; Deep learning ; Enterprise resource planning ; Fabrication ; Machine learning ; Manufacturing ; Manufacturing industry ; Monitoring systems ; Software ; Subject specialists ; Sustainability ; Visualization</subject><ispartof>Sustainability, 2022-02, Vol.14 (3), p.1103</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c4063e3c1b4b289bab7b9f6008ea55788cf226b21a2c8ae1ed76c05811679fa53</citedby><cites>FETCH-LOGICAL-c295t-c4063e3c1b4b289bab7b9f6008ea55788cf226b21a2c8ae1ed76c05811679fa53</cites><orcidid>0000-0002-4061-9532 ; 0000-0002-2280-8209 ; 0000-0002-4916-6576 ; 0000-0002-0476-7730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Moon, Junhyung</creatorcontrib><creatorcontrib>Park, Gyuyoung</creatorcontrib><creatorcontrib>Yang, Minyeol</creatorcontrib><creatorcontrib>Jeong, Jongpil</creatorcontrib><title>Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry</title><title>Sustainability</title><description>When a consultant of a company that provides a smart factory solution consults with a customer, it is difficult to define the outline of the manufacturing process and create all activities within the process by case. It requires a large amount of resources from the company to perform a task. In this study, we propose a process discovery automation system that helps consultants define manufacturing processes. In addition, for process discovery, a fully attention-based transformer model, which has recently shown a strong performance, was applied. To be useful to consultants, we solved the black box characteristics of the deep learning model applied to process discovery and proposed a visualization method that can be used in the monitoring system when explaining the discovery process. In this study, we used the event log of the metal fabrication process to perform the modeling, visualization, and evaluation.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Consultants</subject><subject>Deep learning</subject><subject>Enterprise resource planning</subject><subject>Fabrication</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Monitoring systems</subject><subject>Software</subject><subject>Subject specialists</subject><subject>Sustainability</subject><subject>Visualization</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1LAzEQhoMoWGov_oKAN2E1H91s9lhbPwpVe1Cvy2w2qSk1qclGqL_e1RUUcS4zMM87Hy9Cx5SccV6S85jomHBKCd9DA0YKmlGSk_1f9SEaxbgmXXBOSyoGyM90tCuHwTX4SQdrrILWeoe9wcvglY4Rz2xU_k2HHb6AqBvcde8WSzzZboMH9dxrbUywse-92PiAb8ElA6pNwboVnrsmxTbsjtCBgU3Uo-88RI9Xlw_Tm2xxfz2fThaZYmXeZmpMBNdc0XpcM1nWUBd1aQQhUkOeF1Iqw5ioGQWmJGiqm0IokktKRVEayPkQnfRzuxtfk45ttfYpuG5lxQQrZGdUITrqtKdU8DEGbaptsC8QdhUl1aen1Y-nHUz-wMq2X_-2AezmP8kHGmt5fw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Moon, Junhyung</creator><creator>Park, Gyuyoung</creator><creator>Yang, Minyeol</creator><creator>Jeong, Jongpil</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4061-9532</orcidid><orcidid>https://orcid.org/0000-0002-2280-8209</orcidid><orcidid>https://orcid.org/0000-0002-4916-6576</orcidid><orcidid>https://orcid.org/0000-0002-0476-7730</orcidid></search><sort><creationdate>20220201</creationdate><title>Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry</title><author>Moon, Junhyung ; Park, Gyuyoung ; Yang, Minyeol ; Jeong, Jongpil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c4063e3c1b4b289bab7b9f6008ea55788cf226b21a2c8ae1ed76c05811679fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Consultants</topic><topic>Deep learning</topic><topic>Enterprise resource planning</topic><topic>Fabrication</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Monitoring systems</topic><topic>Software</topic><topic>Subject specialists</topic><topic>Sustainability</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Junhyung</creatorcontrib><creatorcontrib>Park, Gyuyoung</creatorcontrib><creatorcontrib>Yang, Minyeol</creatorcontrib><creatorcontrib>Jeong, Jongpil</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Junhyung</au><au>Park, Gyuyoung</au><au>Yang, Minyeol</au><au>Jeong, Jongpil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry</atitle><jtitle>Sustainability</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1103</spage><pages>1103-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>When a consultant of a company that provides a smart factory solution consults with a customer, it is difficult to define the outline of the manufacturing process and create all activities within the process by case. It requires a large amount of resources from the company to perform a task. In this study, we propose a process discovery automation system that helps consultants define manufacturing processes. In addition, for process discovery, a fully attention-based transformer model, which has recently shown a strong performance, was applied. To be useful to consultants, we solved the black box characteristics of the deep learning model applied to process discovery and proposed a visualization method that can be used in the monitoring system when explaining the discovery process. In this study, we used the event log of the metal fabrication process to perform the modeling, visualization, and evaluation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14031103</doi><orcidid>https://orcid.org/0000-0002-4061-9532</orcidid><orcidid>https://orcid.org/0000-0002-2280-8209</orcidid><orcidid>https://orcid.org/0000-0002-4916-6576</orcidid><orcidid>https://orcid.org/0000-0002-0476-7730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-02, Vol.14 (3), p.1103
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2627840376
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Artificial intelligence
Automation
Consultants
Deep learning
Enterprise resource planning
Fabrication
Machine learning
Manufacturing
Manufacturing industry
Monitoring systems
Software
Subject specialists
Sustainability
Visualization
title Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Verification%20of%20Process%20Discovery%20Based%20on%20NLP%20Approach%20and%20Visualization%20for%20Manufacturing%20Industry&rft.jtitle=Sustainability&rft.au=Moon,%20Junhyung&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=1103&rft.pages=1103-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14031103&rft_dat=%3Cproquest_cross%3E2627840376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627840376&rft_id=info:pmid/&rfr_iscdi=true