A Real-Valued Measure on non-Archimedean Field Extensions of
We introduce a real-valued measure on non-Archimedean ordered fields that extend the field of real numbers . The definition of is inspired by the Loeb measures of hyperreal fields in the framework of Robinson’s analysis with infinitesimals. The real-valued measure turns out to be general enough to o...
Gespeichert in:
Veröffentlicht in: | P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2022, Vol.14 (1), p.14-43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | P-adic numbers, ultrametric analysis, and applications |
container_volume | 14 |
creator | Bottazzi, Emanuele |
description | We introduce a real-valued measure
on non-Archimedean ordered fields
that extend the field of real numbers
. The definition of
is inspired by the Loeb measures of hyperreal fields in the framework of Robinson’s analysis with infinitesimals. The real-valued measure
turns out to be general enough to obtain a canonical measurable representative in
for every Lebesgue measurable subset of
, moreover the measure of the two sets is equal. In addition,
it is more expressive than a class of non-Archimedean uniform measures. We focus on the properties of the real-valued measure in the case where
, the Levi-Civita field. In particular, we compare
with the uniform non-Archimedean measure over
developed by Shamseddine and Berz, and we prove that the first is infinitesimally close to the second, whenever the latter is defined. We also define a real-valued integral for functions on the Levi-Civita field, and we prove that every real continuous function has an integrable representative in
. Recall that this result is false for the current non-Archimedean integration over
. The paper concludes with a discussion on the representation of the Dirac distribution by pointwise functions on non-Archimedean domains. |
doi_str_mv | 10.1134/S2070046622010022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2627554845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627554845</sourcerecordid><originalsourceid>FETCH-LOGICAL-p712-22fe5a2654beb479c98d867940edca5014c011462b310f98a59deb38bc34a0a53</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRsNT-AG8LnqOzs18JeAmlVaEiaPEaNslEU-Im7jbgz7ehogfn8g4vDzPwMHYp4FoIqW5eECyAMgYRBADiCZtNVQLKqtPf3ZhztohxB4eRaFONM3ab82dyXfLqupFq_kgujoF477nvfZKH6r39oJqc5-uWupqvvvbkY9v7yPvmgp01rou0-Mk5265X2-V9snm6e1jmm2SwAhPEhrRDo1VJpbJZlaV1amymgOrKaRCqAiGUwVIKaLLU6aymUqZlJZUDp-WcXR3PDqH_HCnui10_Bn_4WKBBq7VK1UThkYpDaP0bhT9KQDF5Kv55kt_dEleu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627554845</pqid></control><display><type>article</type><title>A Real-Valued Measure on non-Archimedean Field Extensions of</title><source>Springer Nature - Complete Springer Journals</source><creator>Bottazzi, Emanuele</creator><creatorcontrib>Bottazzi, Emanuele</creatorcontrib><description>We introduce a real-valued measure
on non-Archimedean ordered fields
that extend the field of real numbers
. The definition of
is inspired by the Loeb measures of hyperreal fields in the framework of Robinson’s analysis with infinitesimals. The real-valued measure
turns out to be general enough to obtain a canonical measurable representative in
for every Lebesgue measurable subset of
, moreover the measure of the two sets is equal. In addition,
it is more expressive than a class of non-Archimedean uniform measures. We focus on the properties of the real-valued measure in the case where
, the Levi-Civita field. In particular, we compare
with the uniform non-Archimedean measure over
developed by Shamseddine and Berz, and we prove that the first is infinitesimally close to the second, whenever the latter is defined. We also define a real-valued integral for functions on the Levi-Civita field, and we prove that every real continuous function has an integrable representative in
. Recall that this result is false for the current non-Archimedean integration over
. The paper concludes with a discussion on the representation of the Dirac distribution by pointwise functions on non-Archimedean domains.</description><identifier>ISSN: 2070-0466</identifier><identifier>EISSN: 2070-0474</identifier><identifier>DOI: 10.1134/S2070046622010022</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Algebra ; Continuity (mathematics) ; Mathematics ; Mathematics and Statistics ; Real numbers</subject><ispartof>P-adic numbers, ultrametric analysis, and applications, 2022, Vol.14 (1), p.14-43</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070046622010022$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070046622010022$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bottazzi, Emanuele</creatorcontrib><title>A Real-Valued Measure on non-Archimedean Field Extensions of</title><title>P-adic numbers, ultrametric analysis, and applications</title><addtitle>P-Adic Num Ultrametr Anal Appl</addtitle><description>We introduce a real-valued measure
on non-Archimedean ordered fields
that extend the field of real numbers
. The definition of
is inspired by the Loeb measures of hyperreal fields in the framework of Robinson’s analysis with infinitesimals. The real-valued measure
turns out to be general enough to obtain a canonical measurable representative in
for every Lebesgue measurable subset of
, moreover the measure of the two sets is equal. In addition,
it is more expressive than a class of non-Archimedean uniform measures. We focus on the properties of the real-valued measure in the case where
, the Levi-Civita field. In particular, we compare
with the uniform non-Archimedean measure over
developed by Shamseddine and Berz, and we prove that the first is infinitesimally close to the second, whenever the latter is defined. We also define a real-valued integral for functions on the Levi-Civita field, and we prove that every real continuous function has an integrable representative in
. Recall that this result is false for the current non-Archimedean integration over
. The paper concludes with a discussion on the representation of the Dirac distribution by pointwise functions on non-Archimedean domains.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Algebra</subject><subject>Continuity (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Real numbers</subject><issn>2070-0466</issn><issn>2070-0474</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkE1Lw0AQhhdRsNT-AG8LnqOzs18JeAmlVaEiaPEaNslEU-Im7jbgz7ehogfn8g4vDzPwMHYp4FoIqW5eECyAMgYRBADiCZtNVQLKqtPf3ZhztohxB4eRaFONM3ab82dyXfLqupFq_kgujoF477nvfZKH6r39oJqc5-uWupqvvvbkY9v7yPvmgp01rou0-Mk5265X2-V9snm6e1jmm2SwAhPEhrRDo1VJpbJZlaV1amymgOrKaRCqAiGUwVIKaLLU6aymUqZlJZUDp-WcXR3PDqH_HCnui10_Bn_4WKBBq7VK1UThkYpDaP0bhT9KQDF5Kv55kt_dEleu</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bottazzi, Emanuele</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2022</creationdate><title>A Real-Valued Measure on non-Archimedean Field Extensions of</title><author>Bottazzi, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p712-22fe5a2654beb479c98d867940edca5014c011462b310f98a59deb38bc34a0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Algebra</topic><topic>Continuity (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bottazzi, Emanuele</creatorcontrib><jtitle>P-adic numbers, ultrametric analysis, and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bottazzi, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Real-Valued Measure on non-Archimedean Field Extensions of</atitle><jtitle>P-adic numbers, ultrametric analysis, and applications</jtitle><stitle>P-Adic Num Ultrametr Anal Appl</stitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>14</spage><epage>43</epage><pages>14-43</pages><issn>2070-0466</issn><eissn>2070-0474</eissn><abstract>We introduce a real-valued measure
on non-Archimedean ordered fields
that extend the field of real numbers
. The definition of
is inspired by the Loeb measures of hyperreal fields in the framework of Robinson’s analysis with infinitesimals. The real-valued measure
turns out to be general enough to obtain a canonical measurable representative in
for every Lebesgue measurable subset of
, moreover the measure of the two sets is equal. In addition,
it is more expressive than a class of non-Archimedean uniform measures. We focus on the properties of the real-valued measure in the case where
, the Levi-Civita field. In particular, we compare
with the uniform non-Archimedean measure over
developed by Shamseddine and Berz, and we prove that the first is infinitesimally close to the second, whenever the latter is defined. We also define a real-valued integral for functions on the Levi-Civita field, and we prove that every real continuous function has an integrable representative in
. Recall that this result is false for the current non-Archimedean integration over
. The paper concludes with a discussion on the representation of the Dirac distribution by pointwise functions on non-Archimedean domains.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070046622010022</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0466 |
ispartof | P-adic numbers, ultrametric analysis, and applications, 2022, Vol.14 (1), p.14-43 |
issn | 2070-0466 2070-0474 |
language | eng |
recordid | cdi_proquest_journals_2627554845 |
source | Springer Nature - Complete Springer Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Algebra Continuity (mathematics) Mathematics Mathematics and Statistics Real numbers |
title | A Real-Valued Measure on non-Archimedean Field Extensions of |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Real-Valued%20Measure%20on%20non-Archimedean%20Field%20Extensions%20of&rft.jtitle=P-adic%20numbers,%20ultrametric%20analysis,%20and%20applications&rft.au=Bottazzi,%20Emanuele&rft.date=2022&rft.volume=14&rft.issue=1&rft.spage=14&rft.epage=43&rft.pages=14-43&rft.issn=2070-0466&rft.eissn=2070-0474&rft_id=info:doi/10.1134/S2070046622010022&rft_dat=%3Cproquest_sprin%3E2627554845%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627554845&rft_id=info:pmid/&rfr_iscdi=true |